

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Microsoft .NET 2.0 Application Development
(70-536) LearnSmart Exam Manual

Copyright © 2011 by PrepLogic, LLC
Product ID: 10725
Production Date: July 22, 2011

All rights reserved. No part of this document shall be stored in a retrieval system or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the information contained herein.

Warning and Disclaimer
Every effort has been made to make this document as complete and as accurate as possible, but no war-
ranty or fitness is implied. The publisher and authors assume no responsibility for errors or omissions. The
information provided is on an "as is" basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this document.

LearnSmart Cloud Classroom, LearnSmart Video Training, Printables, Lecture Series, Quiz Me Series,
Awdeeo, PrepLogic and other PrepLogic logos are trademarks or registered trademarks of PrepLogic, LLC.
All other trademarks not owned by PrepLogic that appear in the software or on the Web Site (s) are the
property of their respective owners.

Volume, Corporate, and Educational Sales
PrepLogic offers favorable discounts on all products when ordered in quantity. For more information,
please contact PrepLogic directly:

1-800-418-6789
solutions@learnsmartsystems.com

International Contact Information
International: +1 (813) 769-0920

United Kingdom: (0) 20 8816 8036

http://www.preplogic.com/products/video/view-video-training.aspx
mailto: solutions@preplogic.com

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Table of Contents

Abstract . 10

What to Know . 11

Tips . 11

Overview of new features, enhancements,

and capabilities of the .NET Framework 2.0 . 12

1.1 Microsoft .NET Framework 2.0 Certification Path. 12

1.2 Fundamentals of the .NET Framework . 15

1.3 New features, enhancements, and capabilities of the .NET Framework 2.0 18

Developing applications that use system types and collections . 22

2.1. Defining system types and collections . 22

2.2. Managing data in a .NET Framework application by using system types 23

System Namespace . 23

Value Types . 23

Nullable type . 25

Reference Types . 26

Attributes . 27

Generic Types . 27

Exception Classes . 27

Boxing and UnBoxing . 29

TypeForwardedToAttribute Class . 29

2.3 Managing associated data using collections . 29

System .Collections Namespace . 29

Collection interfaces . 31

ICollection interface and IList interface . 31

IComparer interface and IEqualityComparer interface . 31

IDictionary interface and IDictionaryEnumerator interface . 32

IEnumerable interface and IEnumerator interface . 32

Iterators . 32

2.4 Improving type safety and application performance using generic collections 33

System .Collections .Generic Namespace . 33

Collection.Generic interfaces . 35

Generic IComparable interface (Refer System Namespace) . 35

Generic Dictionary . 36

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Generic LinkedList class . 37

2.5 Managing data by using specialized collections . 38

System .Collections .Specialized Namespace . 38

Specialized String classes . 38

Specialized Dictionary . 39

Named collections . 39

2.6 Implementing .NET Framework interfaces to

cause components to comply with standard contracts. . 40

System Namespace . 40

2.7 Controlling interactions between

application components by using events and delegates . 41

Implementing service processes, threading and

application domains in a .NET Framework application . 42

3.1 Use Implement, install, and control a service . 42

System .ServiceProcess namespace . 42

3.2 Develop multithreaded .NET Framework applications . 45

System .Threading namespace . 45

3.3 Create a unit of isolation for common language runtime

in a .NET Framework application by using application domains . 51

System namespace . 51

Create an application domain . . 51

Configure an application domain . 52

Retrieve setup information from an application domain . . 52

Load assemblies into an application domain . 53

Embedding configuration, diagnostic, management,

and installation features into a .NET Framework application . 53

4.1 Embed configuration management

functionality into a .NET Framework application . 53

System .Configuration Namespace . 53

Configuration class and ConfigurationManager class . 53

ConfigurationElement class, ConfigurationElementCollection

class, and Configuration ElementProperty class . 54

ConfigurationSection class, ConfigurationSectionCollection class,

Configuration SectionGroup class, and ConfigurationSectionGroupCollection class 54

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement ISettingsProviderService interface . 54

Implement IApplicationSettingsProvider interface . 55

ConfigurationValidatorBase class . 55

4.2 Create a custom Microsoft Windows Installer for the .NET Framework components

by using the System.Configuration.Install namespace, and configure the .NET Framework

applications by using configuration files, environment variables, and the .NET Framework

Configuration tool (Mscorcfg.msc) . 55

Installer class . 55

AssemblyInstaller class . 56

ComponentInstaller class . 56

ManagedInstallerClass class . 56

InstallContext class . 56

InstallerCollection class . 56

InstallEventHandler delegate . 56

Configure a .NET Framework application by using

the .NET Framework Configuration tool (Mscorcfg .msc) . 57

4.3 Manage an event log by using the System.Diagnostics namespace 57

Write to an event log . 57

Read from an event log . 58

Create a new event log . 58

4.4 Manage system processes and monitor the performance of a .NET Framework

application by using the diagnostics functionality of the .NET Framework 2.0 59

Get a list of all running processes . 59

Retrieve information about the current process . 59

Get a list of all modules that are loaded by a process . 59

PerformanceCounter class, PerformanceCounterCategory,

and CounterCreationData class . 59

Start a process both by using and by not using command-line arguments 60

StackTrace class . 60

StackFrame class . 60

4.5 Debug and trace a .NET Framework

application by using the System.Diagnostics namespace. 61

Debug class and Debugger class . 61

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Trace class, CorrelationManager class, TraceListener class,

TraceSource class, Trace Switch class, XmlWriterTraceListener

class, DelimitedListTraceListener class, and EventlogTraceListener class 63

Debugger attributes . 63

4.6 Embed management information and events into a .NET Framework application 64

System .Management Namespace . 64

Retrieve a collection of Management objects by using the ManagementObjectSearcher

class and its derived classes . . 64

Subscribe to management events by using the ManagementEventWatcher class 65

Implementing serialization and input/output

functionality in a .NET Framework application . 65

5.1 Serialize or deserialize an object or an object

graph by using runtime serialization techniques. . 65

System .Runtime .Serialization Namespace . 65

Serialization interfaces . 65

Serilization attributes (all new to the .NET Framework 2 .0): . 65

SerializationEntry structure and SerializationInfo class . 66

ObjectManager class . 66

Formatter class, FormatterConverter class, and FormatterServices class 66

StreamingContext structure . 66

5.2 Control the serialization of an object into XML format by using the System.Xml.

Serialization namespace. . 66

Serialize and deserialize objects into XML format by using the XmlSerializer class 66

5.3 Implement custom serialization formatting

by using the Serialization Formatter classes. 67

SoapFormatter class . 67

BinaryFormatter class . 67

5.4 Access files and folders by using the File System classes. . 67

System .IO Namespace . 67

File class and FileInfo class . 67

Directory class and DirectoryInfo class . 68

DriveInfo class and DriveType enumeration . 68

FileSystemInfo class and FileSystemWatcher class . 68

Path class . 68

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

ErrorEventArgs class and ErrorEventHandler delegate . 69

RenamedEventArgs class and RenamedEventHandler delegate . 69

5.5 Manage byte streams by using Stream classes. . 69

FileStream class . 69

Stream class . 69

MemoryStream class . 69

BufferedStream class . 70

5.6 Manage the .NET Framework application data by using Reader and Writer classes. . . 70

StringReader class and StringWriter class . 70

TextReader class and TextWriter class . 70

StreamReader class and StreamWriter class . 70

BinaryReader class and BinaryWriter class . 70

5.7 Compress or decompress stream information in a .NET Framework application

(refer System.IO.Compression namespace), and improve the security of application data

by using isolated storage. . 71

IsolatedStorageFile class . 71

IsolatedStorageFileStream class . 71

DeflateStream class . 71

GZipStream class . 71

Improving the security of the .NET Framework

applications by using the .NET Framework 2.0 security features . 72

6.1 Implement code access security to improve the security of a .NET Framework

application. . 72

System .Security Namespace . 72

6.2 Implement access control by using the System.Security.AccessControl classes. 73

DirectorySecurity class, FileSecurity class, FileSystemSecurity class, and RegistrySecurity

class . 73

6.3 Implement a custom authentication scheme by using the System.Security.

Authentication classes. . 74

6.4 Encrypt, decrypt, and hash data by using the System.Security.Cryptography

classes. . 74

6.5 Control permissions for resources by using the System.Security.Permissions

classes. . 75

Control code privileges by using System.Security.Policy classes. . 76

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

6.7 Access and modify identity information

by using the System.Security.Principal classes. 78

Implementing interoperability, reflection, and mailing functionality in a .NET

Framework application . 80

7.1 Expose COM components to the .NET

Framework and the .NET Framework components to COM. . 80

System .Runtime .InteropServices namespace . 80

Import a type library as an assembly . . 80

7.2 Call unmanaged DLL functions in a .NET Framework application, and control the

marshaling of data in a .NET Framework application. . 81

Platform Invoke . 81

Create a class to hold DLL functions . 81

7.3 Implement reflection functionality in a .NET Framework application (refer System.

Reflection namespace), and create metadata, Microsoft intermediate language (MSIL),

and a PE file by using the System.Reflection.Emit namespace. 82

SystemReflection namespace . 82

Assembly attributes . 83

Info classes . 83

Binder class and BindingFlags . 84

MethodBase class and MethodBody class . 84

Builder classes . 84

7.4 Send electronic mail to a Simple Mail Transfer Protocol

(SMTP) server for delivery from a .NET Framework application. . 85

System .Net .Mail namespace . 85

MailMessage class . 85

MailAddress class and MailAddressCollection class . 85

SmtpClient class, SmtpPermission class, and SmtpPermissionAttribute class 85

Attachment class, AttachmentBase class, and AttachmentCollection class 86

SmtpException class and SmtpFailedReceipientException class . 86

SendCompletedEventHandler delegate . 86

LinkedResource class and LinkedResourceCollection class . 86

AlternateView class and AlternateViewCollection class . 87

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implementing globalization, drawing, and text

manipulation functionality in a .NET Framework application . 87

8.1 Format data based on culture information. . 87

System .Globalization namespace . 87

Access culture and region information in a .NET Framework application 87

CultureTypes enumeration . 88

RegionInfo class . 88

Format date and time values based on the culture . . 88

Format number values based on the culture . . 88

Perform culture-sensitive string comparison . 89

Build a custom culture class based on existing culture and region classes 89

8.2 Enhance the user interface of a .NET Framework

application by using the System. Drawing namespace. . 89

Enhance the user interface of a .NET Framework

application by using brushes, pens, colors, and fonts . 90

Enhance the user interface of a .NET Framework

application by using graphics, images, bitmaps, and icons . . 92

Enhance the user interface of a .NET Framework application by using shapes and sizes . . . 93

8.3 Enhance the text handling capabilities of a .NET Framework application (refer

System.Text namespace), and search, modify, and control text in a .NET Framework

application by using regular expressions. . 94

System .Text .RegularExpressions . 94

Decode text by using Decoding classes . . 96

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Abstract
This Exam Manual will help prepare students to pass the certification exam for 70-536: TS: Microsoft .NET
Framework 2.0—Application Development Foundation. This exam is one of the examinations required for
the following three Microsoft Certified Technology Specialist (MCTS) certifications:

 n Microsoft Certified Technology Specialist: .NET Framework 2.0 Web Applications

 n Microsoft Certified Technology Specialist: .NET Framework 2.0 Windows Applications

 n Microsoft Certified Technology Specialist: .NET Framework 2.0 Distributed Applications

Microsoft Technology Specialists are capable of building, implementing, troubleshooting, and debugging
applications using Microsoft technologies. Each of the above certifications requires that a candidate pass
the 70-536 exam and one additional exam specific to each certification path

When taking the 70-536 exam, candidates may select the programming language in which all code ex-
amples will appear. When the exam begins, they must select one of the following languages:

 n Microsoft Visual Basic 2005

 n Microsoft Visual C# 2005

 n Microsoft Visual C++ 2005

The 70-536 exam consists of 150 questions designed to measure candidates’ knowledge and competency
in the fundamentals of the.NET Framework 2.0. This exam covers new features and enhancements in the
following areas, specifically, the enhanced capabilities of the namespaces. The following topics are covered
in this exam:

 n Fundamentals of the .NET Framework and an overview of new features, enhancements,
and capabilities of the .NET Framework 2.0

 n Service processes, threading, and application domains (41 questions)

 n Configuration, diagnostic, management, and installation features (21 questions)

 n Serialization and input/output functionality (26 Questions)

 n The .NET Framework 2.0 security features (29 Questions)

 n Interoperability, reflection, and mailing functionality (16 Questions)

 n Globalization, drawing, and text manipulation functionality (17 Questions)

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

What to Know
The best way to prepare for this exam is to read all the material you can find related the .NET and .NET
Framework 2.0. Also, you should try to get as much hands on experience with the .NET framework as pos-
sible. This is accomplished in three ways: by Coding, Reading, and Studying. Microsoft provides a wonder-
ful web resource called the MSDN library that contains sample code, documentation, and other materials
that you can use to further your knowledge of the .NET Framework.

It’s a good idea to also participate in several large projects. Whether you do these projects at your office or
you simulate them on your own, it’s wise to involve yourself in the practical coding of large scale multi-
threaded .NET intensive apps that use a wide variety of new extensions to the .NET Framework you will
find in this Exam Manual. Also, you should check back at www.PrepLogic.com to see the newly upcoming
leading practice exam, which will be available for an extremely low price.

Lastly, it’s highly recommended that you familiarized yourself with the objectives of the exam at:
http://www.microsoft.com/learning/exams/70-536.asp

Tips
This exam requires a thorough understanding of the .NET Framework as well as the new capabilities
specifically provided by the .NET 2.0 Framework. Depending on the programming language you select,
you will need to be familiar with the Visual Basic 2005, Visual C# 2005, or Visual C++ 2005. You will not
be required to write and compile code, but you should be familiar with syntax and structure of the
language selected.

The .NET Framework 2.0 does not introduce a new development framework or paradigm, implementation
model, or scripting model from earlier releases of .NET Framework 1.0 or .NET Framework 1.1. However,
because it is much more than an incremental release, it introduces significant enhancements to the .NET
Framework. This manual does not cover each technical item in detail, but it provides a targeted overview
of the material in this exam and prepares you to understand the topics outlined in the Technology Spe-
cialist (TS) Exam 70-536: TS: Microsoft .NET Framework 2.0—Application Development Foundation exam.

http://www.preplogic.com/products/video/view-video-training.aspx
http://www.microsoft.com/learning/exams/70-536.asp

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Overview of new features, enhancements,
and capabilities of the .NET Framework 2.0

1.1 Microsoft .NET Framework 2.0 Certification Path
This Exam Manual will help prepare you for the certification exam for 70-536: TS: Microsoft .NET Frame-
work 2.0—Application Development Foundation. This exam is one of the examinations required for one of
the following three Microsoft Certified Technology Specialist (MCTS) certifications:

 n Microsoft Certified Technology Specialist: .NET Framework 2.0 Web Applications

 n Microsoft Certified Technology Specialist: .NET Framework 2.0 Windows Applications

 n Microsoft Certified Technology Specialist: .NET Framework 2.0 Distributed Applications

Microsoft Technology Specialists are capable of building, implementing, troubleshooting, and debugging
applications using Microsoft technologies. The above certifications require that a candidate pass the 70-
536 exam and one additional exam specific to each certification path. The certification path for all three
options is follows:

 MCTS Certification Path Options

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Candidates for the 70-536 exam can select the programming language in which all code examples will
appear. When the exam begins, they must select from one of the following:

 n Microsoft Visual Basic 2005

 n Microsoft Visual C# 2005

 n Microsoft Visual C++ 2005

The 70-536 exam consists of 150 questions that measure candidates’ knowledge of the fundamentals of
the.NET Framework 2.0. It covers new features and enhancements in the following areas, specifically, the
enhanced capabilities of the namespaces.

After achieving a Microsoft Certified Technology Specialist (MCTS) certification, candidates can enhance
their certification level by becoming a Microsoft Certified Professional Developer (MCPD). The MCPD certi-
fication is targeted to a candidate’s specific technical expertise. The three MCPD certifications are:

 n Microsoft Certified Professional Developer: Web Applications Developer

 n Microsoft Certified Professional Developer: Windows Applications Developer

 n Microsoft Certified Professional Developer: Enterprise Applications Developer

Each of the above certifications requires a candidate to pass one additional exam specific to a certification
path (the MCPD: Enterprise Applications Developer requires all three MCTS exams in addition to the MCPD
exam). The certification path for all three options is displayed below:

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 MCPD Certification Path Options

Candidates who have achieved certification as either a Microsoft Certified Application Developer (MCAD)
or Microsoft Certified Solutions Developer (MCSD) can upgrade to the MCPD level by taking the following
upgrade exams:

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Upgrade Certification Path Options

1.2 Fundamentals of the .NET Framework
This manual assumes that you are familiar with the .NET Framework and have been developing ap-
plications (Windows Forms/Windows GUI Applications, ASP.NET Web applications, Mobile applications,
Windows Services, Console Applications, XML Web Services, etc.). The Exam 70-536: TS: Microsoft .NET
Framework 2.0—Application Development Foundation primarily covers enhancements made to the
.NET Framework, specific to version 2.0, but we will briefly review the .NET Framework. For more detailed
information on the .NET Framework and information on each of the examination options available, refer to
the Introduction.

The .NET Framework is a language-neutral component library and execution environment that pro-
vides the infrastructure for building applications using .NET. Application developers can build powerful,
enterprise, integrated applications regardless of platform or language. The .NET Framework 2.0 does not
introduce a new development framework or paradigm, implementation model, or scripting model from
the previous release of .NET Framework 1.0 or .NET Framework 1.1 (the .NET Framework Release 1.0 was
initially released in January of 2002). But because it is more than an incremental release, it introduces
some significant enhancements to the .NET Framework.

The .NET framework is an object-oriented hierarchy of classes that are ubiquitous to all Microsoft Windows
operating systems, regardless of whether the user is developing applications for Windows Forms, Web appli-
cations, mobile applications, services, or any other task. When creating a .NET application, a developer creates

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

a class, and defines the class properties, events, and methods that build the functionality of the application.
With .NET, these classes support object-oriented features such as polymorphism, inheritance and encapsula-
tion. For example, when executing an ASP.NET application, the ASP.NET runtime engine will transform the
source code the .aspx page into an instance of a .NET framework class that inherits from the Page base class.
This fundamental concept is why this exam (Exam 70-536: TS: Microsoft .NET Framework 2.0—Application
Development Foundation) must be passed in tandem with any of three other exams to earn a Microsoft Cer-
tified Technology Specialist certification (with a focus on either.NET Framework 2.0 Web Applications, .NET
Framework 2.0 Windows Applications, or .NET Framework 2.0 Distributed Applications).
The .NET Framework has two main components:

 n The common language runtime (CLR)

 n The .NET Framework class library

The common language runtime (CLR) is at the foundation of the .NET Framework. The CLR provides a run-
time environment and run-time services for .NET applications and is responsible for code management,
access security, language interpretation, memory management, thread management, process manage-
ment, compilation and code accuracy, strict type and code verification (the common type system of CTS)
to ensure that all managed code is self-describing. Code management is an important principle in the
.NET Framework. Code targeting the runtime is managed code (custom object libraries, class libraries),
while code not targeting the runtime is unmanaged code (Internet Information Services, ASP.NET web
applications). The CLR also provides a management environment that automatically provides common
services (garbage collection and security). In addition, ASP.NET provides the environment to incorporate
both managed and unmanaged features, such as an unmanaged component or application such as Inter-
net Explorer with an embedded managed component or Windows Forms control.

As an application developer or system administrator, you are concerned with productivity, reliability and
performance. Because the runtime automatically handles object layout as well as managed references to
objects in memory, they are automatically released when no longer being used. This feature helps elimi-
nate memory leaks and invalid object memory references. Finally, the Just In Time complier (JIT) allows for
managed code to run in the system’s native machine language. Also, because the CLR supports develop-
ment in multiple development languages, application developers can script in their language of choice
while still accessing a common runtime and class library. Finally, the CLR also provides other fundamental
services which are outside the scope of this book.

However, this book will focus on the .NET Framework class library, specifically, on the features, enhance-
ments, and capabilities of the class libraries available in the .NET Framework 2.0. Microsoft defines the .NET
Framework as:

“…a comprehensive, object-oriented collection of reusable types that you can use to develop applications ranging
from traditional command-line or graphical user interface (GUI) applications to applications based on the latest
innovations provided by ASP .NET, such as Web Forms and XML Web services .”

In short, the .NET Framework contains the object-oriented, hierarchical, extensible classes, interfaces, and
value types that provide the framework to build .NET applications, components and controls. They provide
the standard functionality that allows developers to utilize string manipulation, security management,
network communications, thread management, input/output controls and user interface design features.
The .NET Framework provides class libraries (APIs) that replace the libraries and frameworks previously
used by application developers based upon their programming language (Microsoft Foundation Classes
for C++ developers, Visual Basic runtime for VB developers, etc.). The .NET Framework simplifies those is-
sues by providing a common set of APIs for all the supported programming languages (at the time of this
writing, more than 25 languages are supported). The .NET Framework supports cross-language inheritance
(you can inherit classes across language boundaries), error handling and debugging. A class written in one

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

language is reusable by classes written in other languages.
Note: The European Computer Manufacturers Association (ECMA) standard called the Common Language Infrastruc-
ture (CLI) defines the Common Language Specification (CLS) rules for language interoperability. Code written in a CLS-
compliant language is interoperable with code written in another CLS-compliant language.

The .NET Framework currently has four CLS-compliant languages:

 n Microsoft Visual Basic .NET

 n Microsoft Visual C#

 n Microsoft Visual C++ .NET

 n Microsoft Visual J# .NET

The compiler generates the code as Microsoft Intermediate Language (MSIL) which makes the programs
(written in one of the languages specified above) CLS compliant and thus, interoperable with application
written in other CLS-compliant languages. The CLR loads the MSIL and executes the code when the ap-
plication is run.

The .NET Framework also allows multiple versions of applications on the same system by using assem-
blies, which are deployment units in the .NET Framework. This capability is sometimes called side-by-side
execution. The assembly contains the Microsoft Intermediate Language (MSIL) code and metadata with
information about the name and version of the assembly and other assemblies on which the current as-
sembly depends. This structure allows the CLR to use the name and version information in the metadata
to run multiple versions of an application side by side.

As published by Microsoft, the .NET Framework was designed to manage the “plumbing” typically inher-
ent to application development, allowing developers to focus on business logic. The.NET Framework’s
goals are to:

 n Make it easy to build, deploy and administer secure, robust and high-performing applications.

 n To provide a consistent object-oriented programming environment whether object code is
stored and executed locally, executed locally but Internet-distributed, or executed remotely.

 n To provide a code-execution environment that minimizes software deployment and version conflicts.

 n To provide a code-execution environment that promotes safe execution of code (including code
created by an unknown or semi-trusted third party).

 n To provide a code-execution environment that eliminates the performance problems of scripted
or interpreted environments.

 n To make the developer experience consistent across widely varying types of applications (such
as Windows-based applications and Web-based applications).

 n To build all communication on industry standards so that code based on the .NET Framework
can integrate with any other code

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using the .NET Framework, developers can efficiently create the following types of applications and services:

 n Windows Forms/Windows GUI applications

 n ASP.NET Web applications

 n Windows services

 n Console applications

 n XML Web Services

The .NET Framework class library is tightly integrated with the CLR and provides a class library. It also imple-
ments interfaces for developers to create custom classes that integrate seamlessly with the existing classes
of the .NET Framework while providing class libraries to accomplish very specialized (and powerful) tasks.
.NET Framework 2.0 expands on those specialized classes considerably, as outlined within this book.

1.3 New features, enhancements,
and capabilities of the .NET Framework 2.0
The .NET Framework version 2.0 provides significant enhancements to its predecessor (version 1.1). A
summary of some of those enhancements is provided here. Detailed enhancements (relevant to the exam
material) will be provided in this book, especially enhancements made to various namespaces.

Note: Namespaces are organized hierarchically, contain logically related and reusable classes, and divide an assembly

into a logical grouping of types. Multiple assemblies can use the same namespace.

Links to resources regarding other enhancements to the .NET Framework 2.0, while important, are outside
the scope of this book. They will be provided at the end of this chapter for further reference.

 n New classes to create and modify the Access Control List (ACL). These enhancements are dis-
cussed in Chapter 6 – Examination of the .NET Framework 2.0 Security Features.

 n Support for new Authentication stream classes to secure information transmitted between the
client and the server (mutual authentication, data encryption, data signing and support for the
Secure Sockets Layer (SSL). These enhancements are discussed in Chapter 6 – Examination of
the .NET Framework 2.0 Security Features.

 n New features in ADO.NET:

 � Support for user-defined type (UDT)

 � Support for asynchronous database operations

 � Support for XLM data types

 � Support for Large value types

 � Support for snapshot isolation

 � Support for multiple active result sets (MARS) with SQL Server 2005

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n New ASP.NET features:

 � New controls

 � New caching features

 � New support for Web parts

 � New support for master pages

 � Support to deploy Web applications to production servers without source code

 � New device filtering to render output to different devices and browsers

 n Improved support for interoperability with COM. These enhancements are discussed in Chapter
7 – Examination of Interoperability, Reflection, and Mailing Functionality:

 � New support for manipulating operating system handles

 � Improvements to marshaling

 � Improvements in performance with calls between applications in different
application domains

 � Elimination of the dependency on the registry to resolve type library references with
the addition of new switches on the Type Library Importer and Type Library Exporter

 n New support by the NetworkChange class to allow applications to receive notification when the
Internet Protocol (IP) address of the network interface (network card or network adapter) changes

 n Enhancements to the System.NET namespace to provide additional support for
distributed computing:

 � Support for FTP client requests

 � Support for caching of HTTP resources

 � Support for automatic proxy discovery

 � Ability to obtain network traffic and statistical information

 � Addition of HTTPListener class to allow the creation of simple Web servers for respond-
ing to HTTP requests

 � Security and performance enhancements have been made to the System.Net.Sockets
and System.Uri classes

 � Support for SOAP 1.2 and nullable elements in the System.Runtime.Remoting.
Channels namespaces

 � Support for authentication, encryption and additional security enhancements to the
System.Runtime.Remoting.Channels namespace

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Ability to use custom DLLs for EventLog messages, parameters and categories These enhance-
ments are discussed in Chapter 4 – Examination of configuration, diagnostic, management, and
installation features.

 n Added support for X.509 certificate stores, chains and extensions. Also added ability to sign and
verify XML using X.509 certificates without using platform invoke. Also new support for PKCS7
signature and encryption and CMS.

 n New access to File Transfer Protocol (FTP) resources via the WebRequest, WebResponse and
WebClient classes.

 n Using the System.Net.Cache namespace, applications can control the caching of the WebRe-
quest, WebResponse, and WebClient classes.

 n Addition of new namespaces System Namespace and System.Collections.Generic that pro-
vide the ability to create generic classes, structures, interfaces, methods and delegates to be
declared and defined with unspecified (or generic) type parameters instead of specific types.
Generics are currently supported in Visual Basic, C# and C++. Enhancements have been made
to the System.Type and System.Reflection.MethodInfo to allow the examination and manipu-
lation of generic types. These enhancements are discussed in Chapter 2 – Examination of
System Types and Collections.

 n Additional support for globalization features that support developing applications for different
languages/cultures. These enhancements are discussed in Chapter 8 – Examination of globaliza-
tion, drawing, and text manipulation functionality.

 � Ability to define and deploy culture-related information as needed.

 � Improved support for Unicode character mapping, encoding and support for the latest
normalization standard defined by the Unicode consortium.

 � Improvements to the GetCultureInfo method of the System.Globalization.
CultureInfo namespace.

 n Enhancements to the I/O classes to improve reading and writing text files and obtaining drive
information. These enhancements are discussed in Chapter 5 – Examination of serialization and
input/output functionality.

 n Improvements in the Remoting capability to now support IPv6addresses, the exchange of
generic types, and enhancements to the System.Runtime.Remoting.Channels.Tcp and System.
Runtime.Remoting.Channels.Ipc namepaces.

 n Addition of new members to the Console class.

 n Support for 64-bit platforms.

 n New Data Application API (DPDAI) allowing applications to encrypt passwords, keys and connec-
tion strings without needing to call platform invoke and the ability to encrypt blocks of memory
(Windows Server 2003 or later).

 n Ability to control the Debugger display.

 n Debugger enhancements that allow developers to change source code while debugging an ap-
plication in Break mode, then continue and resume the application to observe the effect in any
programming language supported by Visual Studio.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Enhancements to the System.Net.NetworkInformation namespaces to allow access to IP, IPv4,
IPv6, TCP and UDPnetwork traffic statistics. Applications can now view address and configuration
information for the local computer’s network adapters.

 n The new Ping class provides the ability to determine if a remote computer is accessible over the
network (supporting asynchronous and synchronous calls).

 n Significant enhancements have been made to the following programming languages (for more
information, see the URL references located at the end of this chapter):

 � C# 2.0

 � Visual J#

 � Microsoft C/C++

 � Visual Basic

 n Enhancements to the System.Security.SecurityException class now provide additional data
regarding security exceptions. Enhancements to the System.Security namespace are discussed
in Chapter 6 - Examination of the .NET Framework 2.0 security features.

 n A new System.IO.Ports.SerialPort class allows applications to access the computer serial ports
and communicate with the serial I/O devices.

 n Serialization capabilities have been improved with the BinaryFormatter and SoapFormatter
classes to support “version-tolerant serialization,” which allows a type to be deserialized from the
serialization of a different version. These enhancements are discussed in Chapter 5 - Examination
of serialization and input/output functionality.

 n XML serialization now has properties instead of fields to represent schema elements. It also has
been modified to support the serialization of generic types (see Chapter 2 - Examination of sys-
tem types and collections), the use of the Nullable structure. These enhancements are discussed
in Chapter 5 - Examination of serialization and input/output functionality.

 n Improvements to the System.Net.Mail and System.Net.Mime namespaces allow applications to
send e-mail to one (or more) recipients, include attachments, and send carbon and blind carbon
copies. These enhancements are discussed in Chapter 7 - Examination of interoperability, reflec-
tion, and mailing functionality.

 n Strongly Typed Resource Support so The Resource File Generator creates resource files embed-
ded in executable files/satellite assemblies. The Resource File Generator produces a wrapper
class for each resource file, giving the developer access to resources and preventing spelling
mistakes in resource names.

 n New classes that support tracing and logging of system events related to I/O, and application
startup and shutdown. Support for trace data filtering allows developers to specify the type of
data to log.

 n The addition of the Systems.Tranasctions namespace allows developers to have applications use
the local transaction manager or Microsoft Distributed Transaction Coordinator (MSDTC).

 n Web Services now support SOAP 1.2 and WS-I Basic Profile 1.0. Developers can invoke Web
methods asynchronously using an event-based programming pattern.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Significant enhancements have been made to the System.XML namespace. Creating System.
XML.XmlReader and System.XML.XMLWriter has been modified; they now include Type support
and perform better. The 2.0 Framework provides a new XSL Transformation processor (XSLT) and
enhancements to the System.XML.XPath.XPathNavigator namespace. These enhancements are
explained in Chapter 5 - Examination of serialization and input/output functionality.

Specific enhancements to the .NET Framework version 2.0 that are significant to a specific certification
(MCTS: .NET Framework 2.0 Web Applications, MCTS: .NET Framework 2.0 Windows Applications, MCTS:
.NET Framework 2.0 Distributed Applications) are not discussed here. For example, enhancements to
Web Service or Visual Basic are outside the scope of this exam. Other enhancements, while significant, are
outside the scope of the 70-536: TS: Microsoft .NET Framework 2.0—Application Development Foundation
exam, and thus, outside the scope of this book.

You can use the following resources to locate additional information:

 n MSDN - What’s New in the .NET Framework 2.0 - http://msdn2.microsoft.com/en-us/library/
t357fb32(VS.80).aspx

 n MSDN - .NET Framework Developer Center - http://msdn.microsoft.com/netframework/

 n MCTS 70-536 Exam Prep : Microsoft .NET Framework 2.0 Foundation Exam by Amit Kalani

 n MCTS 70-528 Exam Prep : Microsoft .NET Framework 2.0 Web-based Client Development Exam
(Exam Prep) by Amit Kalani

 n MCTS Self-Paced Training Kit (Exam 70-536): Microsoft .NET Framework 2.0 Application Develop-
ment Foundation (Pro – Developer)

Developing applications that use system types
and collections

2.1. Defining system types and collections
In the .NET Framework, the class object is the root of the inheritance hierarchy in the .NET Framework.
Therefore, every class in the .NET Framework derives from this class. Consequently, if you define a class
without specifying any other inheritance, the Object class is the implied base class. The Object class pro-
vides the basic properties and methods that all objects must support (for example, returning an identify-
ing string, returning a Type object, etc.). All types are derived from the System .Object namespace.

The .NET Framework provides two kinds of types, value and reference. Value types, the simplest types in
the .NET Framework, are represented by a series of bits that derive their class from the base class Valu-
eType. Reference types are represented as a location for a sequence of bits. The instance of the reference
type is allocated from the managed common language runtime heap and a reference to an object is
returned. Both types are explained in more detail later in this chapter. System types, value types, reference
types and their derived classes are displayed below.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The System .Collections namespace contains interfaces and classes which define various “collections” of ob-
jects. These “collections” objects are lists, arrays, queues, hash tables and dictionaries. They allow develop-
ers to group related objects as well as iterate, look up, store, sort and manage collections of those objects.
This class is described in more detail later in this chapter.

2.2. Managing data in a .NET
Framework application by using system types

System Namespace
The System Namespace is the root of all the namespaces in the .NET Framework. It contains all the other
namespaces, and the fundamental .NET classes and base classes that define the commonly used value and
reference data types, events, event handlers, interfaces, attributes and processing exceptions.

Value Types
Value types are typically small variables, represented by a series of bits and accessed primarily for a single
data value (numeric and Boolean types). They are still objects (and have properties and methods associ-
ated with them) but they contain their data directly, stored in the memory stack, rather than referencing
data stored elsewhere. Value Types derive their class from the base class ValueType (System .Value base
type). The three value types are:

 n Built-in value types – Base types in the .NET Framework from which other types are built. All
built-in numeric data types are value types.

 n User-defined value types – Also called Structure (or Structs); similar to classes. As value types,
instances user-defined types are stored on the stack. They are composites of other types that
make it easier to work with related data.

 n Enumerations – Related symbols (lists) that have fixed values that improve code readability
and simplify coding since you can assign meaningful symbols to values rather than using
numeric values.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The following are some of the more common value types are available in the .NET Framework (more than
300 value types are available):

Value Type CLS
Compliant*

Description

System.Boolean Yes Boolean value (true or false) (4 Bytes)

System.Byte Yes 8-bit unsigned integer (1 Byte)

System.Char Yes UTF-16 code point (2 Bytes) (4 Bytes)

System.DateTime Yes An instant in time, typically expressed as a date and time of
day (8 Bytes)

System.Decimal Yes Decimal number (16 Bytes)

System.Double Yes Double-precision floating-point number (8 Bytes)

System.Enum Base class for enumerations

System.Int16 Yes 16-bit signed integer (2 Bytes)

System.Int32 Yes 32-bit signed integer (4 Bytes)

System.Int64 Yes 64-bit signed integer (8 Bytes)

System.IntPtr Yes Signed Integer that is platform independent

System.Object Yes Root object

System.SByte No 8-bit signed integer (1 Byte)

System.Single Yes Single-precision floating-point number (4 Bytes)

System.String Yes Fixed-length string of Unicode characters

System.TimeSpan Yes Time interval

System.UInt16 No 16-bit unsigned integer (2 Bytes)

System.UInt32 No 32-bit unsigned integer (4 Bytes)

System.UInt64 No 64-bit unsigned integer (8 Bytes)

System.UIntPtr No Unsigned Integer that is platform independent

*Note: The European Computer Manufacturers Association (ECMA) standard called the Common Language Infrastruc-
ture (CLI) defines the Common Language Specification (CLS) rules for language interoperability. Code written in a CLS-
compliant language is interoperable with code written in another CLS-compliant language. Therefore, programmers
should avoid using signed Byte or unsigned Integer values to achieve cross-language interoperability.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

All types ending in 16 are referred to as WORD size values in the WIN32 platform. All types ending in 32 are
referred to as DWORD size values in the WIN32 platform. All types ending in 64 are referred to as QWORD
size values in the WIN32 platform.

Programmers usually do not use the full system value type name when using value types. For example,
programmers often use Int rather than System .Int32 in their code. Value types have an implicit constructor.
Therefore, declaring a value type instantiates it automatically so the New keyword need not be included as
it does with other classes. While the constructor automatically assigns a default value to the value type (0 or
null) to the new instance, you should always explicitly initialize the variable as shown below:

 VB
 Dim myBoolean as Boolean = False

 or

 C#

 bool myboolean = false;

Nullable type
The Nullable class is new to the .NET Framework 2.0. It supports a value type that can be assigned a null
reference like a reference type (in Visual Basic, this is Nothing). Therefore, you can determine whether
the value has or has not been assigned. The class cannot be inherited. A type is considered nullable
when it can be assigned a value or assigned a null reference. When a type is assigned a null reference,
the type has no value. Some reference types are nullable while others are not. For example, the System .
String reference type is nullable because it can contain an actual value or be expressed as a value of
null. A value type such as Int64 cannot be nullable because it can be expressed only as a value of its
type and null is not a value Int64 value.

The public constructor Nullable Initializes a new instance of the Nullable structure to the specified value.
Two public properties exposed by the Nullable generic type are:

 n HasValue - Gets a value indicating if the current Nullable object has a value (returns true if the
current Nullable object has a value, False if it has no value)

 n Value - Gets the actual value of the Nullable value (if the HasValue property is true). If there is no
value of the Nullable object, an “InvalidOperationException” exception will be thrown.

Some of the public methods exposed by the Nullable generic type are:

 n Equals - Indicates if a Nullable value is equal to another object. This method is Overloaded, there-
fore the following signatures are valid:

 � Nullable.Equals (Object)

Indicates if the specified Object is equal to the current Nullable object.

 � Nullable.Equals (Object, Object)

Indicates if the specified Object instances are considered equal to one another. Returns true if the objects
are equal to one another, are both null references, or are actually the same object instance.

The Equals method supports reference equality for reference types (indicating that the object references
being compared are referring to the same object) and supports bitwise equality for value types (indicat-
ing that the objects have the same binary representation).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n GetValueOrDefault - Returns the value of the current Nullable object or a default value determined
by the signature used. This method is Overloaded, therefore the following signatures are valid:

 � Nullable.GetValueOrDefault() - Returns the value of the current Nullable object or the
object’s default value

 � Nullable.GetValueOrDefault(defaultVal) - Returns the value of the current Nullable
object or the specified default value

 n op_Expicit - Returns the value (of the Value property) of the Nullable value. A static method.

 n op_Implicit - Creates a new nullable object initialized to specified value. A static method.

 n ReferenceEquals - Determines if the Object instances are the same instance. Returns true if the
objects are referencing the same instance or if both objects are null references. A static method.

 n ToString - Returns the text representation of the value of the Nullable object if the HasValue
property is true. If the HasValue property is false, returns an empty string (“”). The string value re-
turned by this method is the same value returned by the ToString method of the object returned
by this object’s Value property.

The Nullable type supports the Nullable generic structure (which is new to the .NET Framework 2.0). The
Nullable generic structure represents an object whose underlying type is a value type that can be as-
signed a null reference.

The Nullable type supports obtaining the underlying type of the Nullable type as well as comparison and
equality operations of Nullable types whose underlying value types do not support generic comparison
and equality operations. For example, a field value may or may not have an actual value depending on the
application’s circumstances. If you define the field as a Nullable type rather than a value type, it can sup-
port the value that it does not exist (e.g., Nothing when using Visual Basic).

If a Nullable type is boxed, the common language runtime automatically boxes the underlying value of
the Nullable object, not the Nullable object itself (boxing and unboxing are explained later in this chapter).
As example of using the Nullable type is as follows:

 VB
 Dim myBoolean as Nullable(Of Boolean) = Nothing

 or

 C#

 Nullable<bool>myboolean = null;

Reference Types
All objects that are not value types (derived from the (derived from the System .ValueType namespace) are
reference types. About 2500 built-in reference types are available in the .NET Framework. Reference types
are types that are represented as a location for a sequence of bits. When a reference object is created,
the instance of the reference type is allocated from the managed common language runtime heap and
a reference to the object is returned (a pointer to the object stored on the stack). For example, the String
object is a reference type (not a value type) that contains an immutable series of one or more characters.
Direct access to the object is not allowed so that the garbage collector can track the any references to the
object and release the data once the references are released.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Attributes
Attributes hold read-only information that programmers place in an object’s metadata. The attributes
describe the object. Attributes can be provided by the .NET Framework or defined and used programmati-
cally within your code. All attributes are derived from the base class System .Attribute. Attributes describe
types, properties and methods so they can return using reflection. The information stored in the attributes
is not only descriptive data; it also can declare requirements for an assembly (such as adding the Serializ-
able attribute to enable a class to be serialized).

For example, System Namespace attributes are displayed below:

System Namespace Attributes

Name Description

AttributeUsageAttribute Specifies the target types that other attribute classes can be applied
(assembly, class, method, etc.)

CLSCompliantAttribute Indicates if the application is compliant with the Common Language
Specification (this is described in the Chapter 1)

FlagsAttribute Indicates if the enumeration can be treated as a bit field (flag)

ObsoleteAttribute Used to indicate which program elements are obsolete and no longer
usable by the application

Generic Types
Generics are a new feature of the .NET Framework 2.0 (and are emphasized in this exam). Generics allow
programmers to create generic type parameters (as opposed to specific types) of classes, structures, in-
terfaces, methods and delegates. Thus, you can define a type but leave the details of the class unspecified
so it can be programmatically specified in the code. Generics are declared and defined with unspecified,
generic type parameters. Once the generic object is used, the actual type is specified. Generic classes are
supported by the System Namespace and System .Collections .Generic namespace. These classes are Diction-
ary, Queue, SortedDictionary, and SortedList .

*Note: Generics are supported in Visual Basic, C#, and C++

New members have been added to the System .Type and System .Reflection .MethodInfo namespaces to
identify generic types. Using reflection, programmers can examine and manipulate generic types and
methods during runtime. Before Generic classes, programmers were forced to use the Object class to
achieve the same functionality. But Generics are type-safe, can reduce run-time errors, and increase perfor-
mance, making them the preferred choice.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Exception Classes
Exception classes represent errors thrown during the application execution . The System .Exception class is
the base class for all exceptions.

When an error is encountered, the system or currently executing application reports the error by throw-
ing an exception, which contains information about the error. The exception is handled by the default
exception handler or the application (if programmed to do so). The CLR allows programmers to use try
and catch blocks to catch and handle exceptions/errors (which are represented by exception objects). The
Message property provides a friendly description of the error and a suggested resolution. The StackTrace
property provides an attack trace with more detailed information and information on where the excep-
tion occurred (listing the called methods, source file and line number where the calls are made).
The two types of categories under the base class Exception are:

 n SystemException – pre-defined common language runtime exceptions

 n ApplicationException – user-defined application exception classes

Some of the public properties exposed by System .Exception namespace are:

 n Data – Gets a collection of key/value pairs providing additional user-defined information about
the exception

 n HelpLnk - Gets or sets a link to the help file associated with the exception

 n InnerExcpetion - Gets the Exception instance that caused the exception

 n Message - Gets a message that describes the exception

 n Source - Gets or sets the name of the application or the object that causes the exception

 n SrackTrace - Gets a string representation of the frames on the call stack at the time the exception
was thrown

 n TargetSite - Gets the method that throws the exception

The protected property exposed by System .Exception namespace is:

 n HResult – Gets or sets HRESULT, a coded numerical value that is assigned to a specific exception

Some of the public methods exposed by System .Exception namespace are:

 n Equals - Determines whether two object instances are equal. This method is overloaded.

 n GetBaseException - When overridden in a derived class, returns the Exception that is the root
cause of one or more subsequent exceptions.

 n GetHashCode - Serves as a hash function for a particular type.

 n GetObjectData - When overridden in a derived class, sets the SerializationInfo with information
about the exception.

 n ToString - Creates and returns a string representation of the current exception.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Boxing and UnBoxing
The conversion of a value type to a reference type is called boxing. The conversion of a reference type to
a value type is called unboxing. Objects based on nullable types are boxed only if the object is not null.
Therefore, if the nullable type is null (and the HasValue property returns false), the object reference returns
null and is not boxed. If the nullable type is not null (and the HasValue property returns true), the underly-
ing type on which the object is based is boxed. However, boxing a non-null nullable value type boxes the
value type itself, not the nullable data type that wraps the value type.

TypeForwardedToAttribute Class
The TypeForwardedToAttribute This class, which is new to the .NET Framework 2.0, specifies the destination
Type in another assembly (and cannot be inherited). You can use this class to move a type from one as-
sembly to another while not disrupting the callers compiled against the original assembly.

2.3 Managing associated data using collections

System.Collections Namespace
The System .Collections namespace supports collections, including classes such as ArrayList, BitArray, Dic-
tionaries, and Stack. These collections simplify using complex data.

Some classes exposed by the System .Collections namespace are :

Classes

Name Description

ArrayList Implements the iList interface whose size is dynamically
increased as required as an index-based collection of objects

BitArray Manages a compact array of bit values (Booleans). true indi-
cates the bit is on (1); false indicates the bit is off (0)

CaseInsensitiveComparer Compares two objects, ignoring the string case

CaseInsensitiveHashCodeProvider Provides the hash code for an object suing a hashing algo-
rithm, ignoring the string case
Note: This class is now obsolete and not supported in the
.NET Framework 2.0.

CollectionBase Provides the abstract base class for a strongly typed collection

Comparer Compares two objects for equivalence. String comparisons
are case sensitive

DictionaryBase Provides the abstract base class for a strongly typed collec-
tion of key/value pairs

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Hashtable Represents a collection of key/value pairs organized based
on the hash code of the key (items can be retrieved by name
or index)

Queue Represents a first-in, first-out (FIFO) collection of objects

ReadOnlyCollectionBase Provides the abstract base class for a strongly typed non-
generic read-only collection

SortedList Represents a collection of key/value pairs sorted by the keys
and accessible by key and index

Stack Represents a last-in-first-out (LIFO) non-generic collection
of objects

Interfaces

Name Description

ICollection Defines size, enumerators, and synchronization methods for
all non-generic collections

IComparer Provides a method that compares two objects

IDictionary Represents a non-generic collection of key/value pairs

IDictionaryEnumerator Enumerates the elements of a non-generic dictionary

IEnumerable Exposes the enumerator, which supports a simple iteration
over a non-generic collection

IEnumerator Provides a simple iteration over a non-generic collection

IEqualityComparer Provides methods to support the comparison of objects for
equality
This is new in the .NET Framework version 2.0

IHashCodeProvider Provides a hash code for an object using a custom hash
function

Note: This interface is now obsolete and not supported in the .NET
Framework 2.0

IList A non-generic collection of objects which can be individu-
ally accessed by index

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Structures

Name Description

DictionaryObject Defines a dictionary key/value pair that can be set or retrieved

ArrayList class
This class implements the iList interface to contain unordered objects of any type whose size is dynami-
cally increased as required. If the elements are not sorted, you may need to call the sort method before
calling operations that require the ArrayList to be sorted, such as the BinarySearch. Items can be added to
the ArrayList using the Add method to add a single object to the collection or AddRange to add several ob-
jects (from another array or collection object that supports the iCollection interface). The capacity property
is automatically set to the number of elements in the ArrayList and automatically reallocated when new
elements are added to the ArrayList. However, it can be explicitly set by setting the Capacity property or
decreased by calling the TrimToSize method. Indexes in the ArrayList are zero-based and can be accessed
using an integer index. The ArrayList accepts null references and can contain duplicate elements.

Collection interfaces

ICollection interface and IList interface
The ICollection is the base interface for classes in the System .Collections namespace. This interface defines
size, enumerators and synchronization methods for all non-generic collections. The IList interface is a
specialized interface that extends the ICollection interface and defines a non-generic collection of objects
(values and its members) which can be individually accessed by index (similar to the ArrayList class previ-
ously described).

Note: If neither the ICollection interface nor IList interface meet your required collection’s requirements, you should use

the ICollection interface to derive your new class since it offers greater flexibility.

IComparer interface and IEqualityComparer interface
The IComparer interface provides a method that compares two objects. Using it with the Array .Sort and
Array .BinarySearch methods, you can customize the sort of a collection of objects. The IEqualityComparer
interface (new in the .NET Framework 2.0) provides methods to support comparing objects for equality.
With the IEqualityComparer interface, you can create a custom definition of equality. The collection types
that accept this interface are: Hashtable, NameValueCollection and OrderedDictionary.

Note: The IComparer interface supports only equality operations. To customize comparisons for sorting or ordering, use

the IComparer interface.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

IDictionary interface and IDictionaryEnumerator interface
The IDictionary interface represents the base interface for non-generic collections of key/value pairs. Each
element is a key/value pair stored in a DictionaryEntry object. Each pair needs a unique key (unless the
value is a null reference, then it need not be unique). The keys in the IDictionary interface can be enumer-
ated but are not sorted. IDictionary interfaces are one of three types: read-only, fixed-size and variable size.
The IDictionaryEnumerator interface enumerates the elements of a non-generic dictionary.

IEnumerable interface and IEnumerator interface
The IEnumerable interface the enumerator, which supports a simple iteration over a non-generic collec-
tion. The IEnumerator interface provides a simple iteration over a non-generic collection.

Iterators
Iterators are a generalization of pointers that allow programmers to work with data structures in a uniform
manner. They are intermediaries between containers and generic algorithms. The five types of iterators are:

 n Output: forward moving, may store but not retrieve values, provided by ostream and inserter

 n Input: forward moving, may retrieve but not store values, provided by istream

 n Forward: forward moving, may store and retrieve values

 n Bidirectional: forward and backward moving, may store and retrieve values, provided by list, set,
multiset, map and multimap

 n Random access: elements accessed in any order, may store and retrieve values, provided by vec-
tor, string and array

Hashtable class
The System .Collections .Hashtable class represents a collection of key/value pairs organized based on the
key’s hash code.

CollectionBase class and ReadOnlyCollectionBase class
The System .Collections .CollectionBase class provides the abstract base class for a strongly typed collection.
The System .Collections .ReadOnlyCollectionBase class provides the abstract base class for a strongly typed
non-generic read-only collection.

DictionaryBase class and DictionaryEntry class
The System .Collections .DictionaryBase class provides the abstract base class for a strongly typed collec-
tion of key/value pairs. The System .Collections .DictionaryEntry provides a non-generic collection of key/
value pairs.

Comparer class
The System .Collections .Comparer class compares two objects for equivalence. String comparisons are
case sensitive.

Queue class
The System .Collections .Queue class represents a first-in, first-out (FIFO) collection of sequential objects.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

SortedList class
The System .Collections .SortedList class represents a collection of key/value pairs sorted by keys and acces-
sible by key and by index.

BitArray class
The System .Collections .BitArray class manages a compact array of bit values (Booleans). True indicates the
bit is on (1), and false indicates the bit is off (0).

Stack class
The System .Collections .Stack class represents a last-in-first-out (LIFO) non-generic collection of objects.

2.4 Improving type safety and application performance using
generic collections

System.Collections.Generic Namespace
The System .Collections .Generic namespace (new to the .NET Framework 2.0) contains interfaces and classes
that define generic collections, allowing developers to create strongly typed collections. This namespace
provides better safety and performance than non-generic strongly typed collections.
Members exposed by the System .Collections .Generic namespace are:

Classes

Name Description

Comparer Generic Provides a base class for implementations of the ICom-
parer generic interface

Dictionary Generic Represents a collection of keys and values

Dictionary.KeyCollection Generic Represents the collection of keys in a Dictionary; can-
not be inherited

Dictionary.ValueCollection Generic Represents the collection of values in a Dictionary;
cannot be inherited

EqualityComparer Generic Provides a base class for implementations of the
IEqualityComparer generic interface

KeyNotFoundException Exception thrown when the key specified for accessing
an element in a collection does not match any key in
the collection

LinkedList Generic Represents a doubly linked list

LinkedListNode Generic Represents a node in a LinkedList; cannot be inherited

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

List Generic Represents a strongly typed list of objects that can be
accessed by index; provides methods to search, sort,
and manipulate lists

Queue Generic Represents a first-in, first-out (FIFO) collection of
objects

SortedDictionary Generic Represents a collection of key/value pairs sorted on
the key

SortedDictionary.KeyCollection Generic Represents the collection of keys in a SortedDictionary;
cannot be inherited

SortedDictionary.ValueCollection
Generic

Represents the collection of values in a SortedDiction-
ary; cannot be inherited

SortedList Generic Represents a collection of key/value pairs sorted by
key based on the associated IComparer implementa-
tion

Stack Generic Represents a variable size last-in-first-out (LIFO) collec-
tion of instances of the same arbitrary type

Interfaces

Name Description

ICollection Generic Defines methods to manipulate generic collections

IComparer Generic Defines a method that a type implements to compare
two objects

IDictionary Generic Represents a generic collection of key/value pairs

IEnumerable Generic Exposes the enumerator, which supports a simple itera-
tion over a collection of a specified type

IEnumerator Generic Supports a simple iteration over a generic collection

IEqualityComparer Generic Defines methods to support the comparison of objects
for equality

IList Generic Represents a collection of objects that can be individu-
ally accessed by index

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Structures

Name Description

Dictionary.Enumerator Generic Enumerates the elements of a Dictionary

Dictionary.KeyCollection.
Enumerator Generic

Enumerates the elements of a Dictionary .KeyCollection

Dictionary.ValueCollection.
Enumerator Generic

Enumerates the elements of a Dictionary .ValueCollection

KeyValuePair Generic Defines a key/value pair that can be set or retrieved

LinkedList.Enumerator Generic Enumerates the elements of a LinkedList

List.Enumerator Generic Enumerates the elements of a List

Queue.Enumerator Generic Enumerates the elements of a Queue

SortedDictionary.Enumerator Generic Enumerates the elements of a SortedDictionary

SortedDictionary.KeyCollection.
Enumerator Generic

Enumerates the elements of a SortedDictionary.
KeyCollection.

SortedDictionary.ValueCollection.
Enumerator

Enumerates the elements of a SortedDictionary .
ValueCollection

Stack.Enumerator Generic Enumerates the elements of a Stack

Collection.Generic interfaces

Generic IComparable interface (Refer System Namespace)
The Generic IComparable interface defines a generalized comparison method that a value type or class
implements to create a type-specific comparison method for ordering instances.

Generic ICollection interface and Generic IList interface
The ICollection defines methods to manipulate generic collections; it is the base interface for classes in the
System .Collections .Generic namespace. The IList interface, a more specialized interface, extends the ICollec-
tion. The IList implementation is a collection of values whose members can be accessed by index.

Generic IComparer interface and Generic IEqualityComparer interface
The generic IComparer interface defines a method that a type implements to compare two objects. It is
used with the System .Collections .Generic .List .Sort and System .Collections .Generic .List .BinarySearch methods
to customize a collection’s sort order. It is implemented by the SortedDictionary and SortedList generic
classes. The default implementation of this interface is the Comparer class.

The IComparer interface supports comparing ordered lists. When using the Compare method, if the objects sort
the same, this method will return 0. Use the IEqualityComparer generic interface for exact equality comparisons.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Generic IDictionary interface
The IDictionary interface represents a generic collection of key/value pairs. With this interface, each ele-
ment is a key/value pair stored in a KeyValuePair object and requires a unique key. The value need not be
unique and the value can be a null reference. While the keys and values can be enumerated, the order of
the list is not sorted.

Generic IEnumerable interface and Generic IEnumerator interface.
The generic IEnumerable interface exposes the enumerator that supports simple iterations over a col-
lection of specified types. The generic IEnumerator interface exposes the base interface for all generic
enumerators (which Supports a simple iteration over a generic collection). You should use the ForEach
statement to enumerate the collection rather than directly manipulating the enumeration. Enumerators
can read data in the collection but they cannot modify the underlying collection. Because the enumera-
tor is positioned before the first element in the collection, the Current property is undefined. You must call
the MoveNext method to advance the enumerator to the first element of the collection before reading the
value of Current . When calling the MoveNext method and you have passed the end of the collection, the
MoveNext method returns false and the Current property is undefined. You must create a new enumera-
tor instance to access an element in the collection again. The enumerator remains valid if the collection
has not been changed. Once the collection is modified (elements are added, modified or deleted), the
enumerator becomes invalid.

IHashCodeProvider interface
The IHashCodeProvider interface, which was supported in .NET Framework 1.0 and 1.1, is obsolete in 2.0.
When programming, you will receive an error during compilation. This interface supplied a hash code for
an object, using a custom hash function.

Generic Dictionary
Generic Dictionary class and Generic Dictionary.Enumerator structure
The generic Dictionary class provides a mapping from a set of keys to a set of values, implemented as a
hash table. Each addition to the dictionary consists of a value and its associated key. Each item in the dic-
tionary object is treated as a KeyValuePair structure, representing a value and its key. When enumerating
the object, using the foreach method, the type of each element in the collection must be supplied.

Generic Dictionary.KeyCollection class and Dictionary.KeyCollection.Enumerator structure
The generic Dictionary .KeyCollection class represents a collection of keys in the Dictionary object. The Diction-
ary .KeyCollection .Enumerator enumerates the elements of the the key collection. You should use the ForEach
statement to enumerate the collection rather than directly manipulating it. Enumerators can read data in
the collection but cannot modify the underlying collection. Because the enumerator is positioned before
the first element in the collection, the Current property is undefined. You must call the MoveNext method to
advance the enumerator to the first element of the collection before reading the value of Current . When call-
ing the MoveNext method and you have passed the end of the collection, the MoveNext method returns false
and the Current property is undefined. You must create a new enumerator instance to access an element in
the collection again. The enumerator remains valid if the collection has not been changed. If the collection is
modified (elements are added, modified or deleted), the enumerator becomes invalid.

Generic Dictionary.ValueCollection class and Dictionary.ValueCollection.Enumerator structure
The generic Dictionary .ValueCollection class represents the collection of values in a Dictionary object. The
Dictionary .ValueCollection refers to the values in the original Dictionary (not a static copy of the object).
Therefore, changes to the Dictionary object are immediately reflected in the Dictionary .ValueCollection
object. The Dictionary .ValueCollection .Enumerator enumerates the elements of a Dictionary .ValueCollection
object. You should use the ForEach statement to enumerate the collection rather than directly manipulat-
ing it. Enumerators can read data in the collection but cannot modify the underlying collection. Because
the enumerator is positioned before the first element in the collection, the Current property is undefined.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You must call the MoveNext method to advance the enumerator to the first element of the collection
before reading the value of Current . When calling the MoveNext method and you have passed the end of
the collection, the MoveNext method returns false and the Current property is undefined. You must create
a new enumerator instance to access an element in the collection again. The enumerator remains valid
if the collection has not been changed. If the collection is modified (elements are added, modified or
deleted), the enumerator becomes invalid.

Generic Comparer class and Generic EqualityComparer class
The generic Comparer class provides the default implementations of the IComparer generic interface. The
interface allows you to implement the Compare method to compare two objects and return an integer
representing the result of the comparison.

The generic EqualityComparer class provides a base class for implementing the IEqualityComparer generic.
The interface allows you to compare equality of objects.

Generic KeyValuePair structure
The Generic KeyValuePair structure is new to the .NET Framework 2.0. This structure defines a key/value
pair that can be set or retrieved.

Generic List class, Generic List.Enumerator structure, and Generic SortedList class
The Generic List class provides a strongly typed list of objects that can be accessed by index, searched,
sorted, and can manipulate lists. The generic List structure is new to the .NET Framework 2.0. The List .
Enumerator structure enumerates the elements of the List. The List .Enumerator structure is new to the .NET
Framework 2.0. The Generic SortedList class provides a collection of key/value pairs sorted by key based on
the associated IComparer implementation. The Generic SortedList class is new to the .NET Framework 2.0.

Generic Queue class and Generic Queue.Enumerator structure
The generic Queue class represents a first-in, first-out (FIFO) collection of objects. This class stores elements
in a circular array: Objects in the queue are inserted at one end and removed from the other. The object’s
capacity is automatically increased as required through reallocation.

Generic SortedDictionary class
The generic SortedDictionary class provides a collection of key/value pairs sorted on the key. Each element
(stored as a key/value pair) can be retrieved as a KeyValuePair structure or a DictionaryEntry (using the
nongeneric IDictionary interface).

Generic LinkedList class
Generic LinkedList class
The generic LinkedList class represents a doubly linked list. Doubly linked lists indicate that each node in
the list points forward to the next element and back to the previous one.

Generic LinkedList.Enumerator structure
The generic LinkedList class supports enumerations via the generic LinkedList .Enumerator structure and
implements the iCollection interface.

Generic LinkedListNode class
Each element in the ListList is a LinkListNode. Insertions into the LinkedList object and removals are
0/1 operations.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Generic Stack class and Generic Stack.Enumerator structure
The Generic Stack class provides a variable size last-in-first-out (LIFO) collection of instances (implemented
as an array) of the same arbitrary type. As elements are added to the Stack class object, the capacity is
automatically increased by size reallocation on the internal array.

The Generic Stack .Enumerator structure allows you to enumerate the elements of the Stack object. The
Stack class accepts null references and allows duplicate elements. You should use the ForEach statement to
enumerate the collection rather than directly manipulating the enumeration. Enumerators can read data in
the collection but cannot modify the underlying collection. Because the enumerator is positioned before
the first element in the collection, the Current property is undefined. You must call the MoveNext method to
advance the enumerator to the first element of the collection before reading the value of Current . When call-
ing the MoveNext method and you have passed the end of the collection, the MoveNext method returns false
and the Current property is undefined. You must create a new enumerator instance to access an element in
the collection again. The enumerator remains valid if the collection has not been changed. If the collection is
modified (elements are added, modified or deleted), the enumerator becomes invalid.

2.5 Managing data by using specialized collections

System.Collections.Specialized Namespace
The System .Collections .Specialized namespace contains special types of classes derived from the System .
Collections namespace that provide features not available in the base collection classes.

Specialized String classes
StringCollection class
The StringCollection class is a type of System .Collections .Specialized class that provides a strongly typed
string collection. The StringCollection class behaves like an ArrayList except that, unlike the ArrayList which
can store items of any type, the StringCollection class can only contain items of type String. The same
methods are exposed for the StringCollection class such as Add, IndexOf and Remove . Since it is type-safe,
when storing a collection of strings, you should use the StringCollection class, not the ArrayList class.

StringDictionary class
The StringDictionary class is a type of System .Collections .Specialized class that provides a strongly typed,
string-based version of the HashTable (or an associative array). The StringDictionary class behaves like the
HashTable except that, unlike the HashTable which stores values of type Object (you can add any type to a
Hashtable), with the StringDictionary class, both the keys and values must be of type String.

StringEnumerator class
The StringEnumerator class allows you to perform a simple iteration over a StringCollection. You should use
the ForEach statement to enumerate the collection rather than directly manipulating the enumeration.
Enumerators can read data in the collection but cannot modify the underlying collection. Because the
enumerator is positioned before the first element in the collection, the Current property is undefined. You
must call the MoveNext method to advance the enumerator to the first element of the collection before
reading the value of Current . When calling the MoveNext method and you have passed the end of the
collection, the MoveNext method returns false and the Current property is undefined. Therefore, you must
call the Reset method followed by the MoveNext method to set the position of the collection to the first
element. The enumerator remains valid if the collection has not been changed. If the collection is modified
(elements are added, modified or deleted), the enumerator becomes invalid.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Specialized Dictionary
HybridDictionary class
The HybridDictionary class provides a hybrid implementation of the Dictionary class. It implements the
IDictionary class using the ListDictionary namespace while the list contains 10 or fewer items, and switches
to the HashTable when the collection contains 10 elements or more. This class uses the optimal data
structure for the object’s size and switches transparently when the object size grows. It is useful when the
number of elements is unknown.

IOrderedDictionary interface and OrderedDictionary class
The IOrderedDictionary interface represents an indexed collection of key/value pairs. Each element stored
in the in the IOrderedDictionary interface is a key/value pair stored in the DictionaryEntry structure and can
be referenced by its key or index. Each element needs a unique key that is not a null reference. The value
need not be unique; it can be a null reference.

The OrderedDictionary class represents an indexed collection of key/value pairs that can be referenced
by their key or index. Like the IOrderedDictionary interface, elements in the OrderedDictionary class are
key/value pairs stored in the DictionaryEntry structure. Elements are not sorted.

ListDictionary class
The ListDictionary class implements the IDictionary class using a singly linked list. Based on the same logic
as in the HybridDictionary class, this class is recommended for collections that will contain 10 or fewer ele-
ments since it will perform faster than a HashTable. The elements are not sorted, the key cannot be a null
reference, but the value item can be a null reference.

Named collections
NameObjectCollectionBase class
The NameObjectCollectionBase class provides the abstract base class for a collection of String Keys and
Object values. The elements can be accessed by the key or the index. The underlying structure of this
class is a HashTable (each element is a key/value pair). This class’ capacity is automatically increased as
elements are added.

NameObjectCollectionBase.KeysCollection class
The NameObjectCollectionBase.KeysCollection class represents a collection of String keys in the collection.

NameValueCollection class
The NameValueCollection class provides a collection of associated String keys and string values (key/value
pair elements). Elements can be accessed by the using key or the index. The class is based on the NameOb-
jectCollectionBase class. However, unlike the NameObjectCollectionBase, this class stores multiple string
values under a single key. Therefore, multiple values per key and values can be retrieved by the index or
key. This class is used in Web applications to store Headers, Query Strings, and Form data. The capacity of
this class is automatically increased as elements are added.

CollectionsUtil class
The CollectionsUtil class allows you to create collections that ignore the string’s case.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

BitVector32 structure and BitVector32.Section structure
The BitVector32 structure provides the structure to store Boolean values or small integers in 32 bits of
memory. This structure allows you to manage individual bits in larger numbers, thus changing the value
of an integer within a number. It can contain either sections for small integers or bit flags for Booleans,
but not both. Note that some members are usable for BitVector32 classes set up as sections, and other
members are usable for BitVector32 classes set up as bit flags. The BitVector32.Section structure class repre-
sents a section of the BitVector32 that can contain an integer number. It is created using the CreateSection
method of the BitVector32 structure.

2.6 Implementing .NET Framework interfaces to cause
components to comply with standard contracts.

System Namespace
The System Namespace defines several interfaces. An interface is a set of function definitions you can
implement. An interface is defined to enforce a common design pattern among classes that not hierarchi-
cally related. An example is the iDisposable interface. The iDisposable interface contains the Dispose meth-
od, with which you are probably familiar. The Dispose method provides a mechanism for programmers
to force an object to perform its cleanup code immediately, rather than waiting for the garbage collector
to dispose of the object and execute the cleanup code. Many objects might use this behavior, but many
will not need it. Therefore, it has not automatically been added to the System .Object base class. However, if
you have a class for which you want to use the Dispose method, that class can implement the iDisposable
interface. The class can preserve its inheritance relationship(s) with its base classes while implementing an
additional interface.

The .NET architects determined that the following interfaces were common enough to occupy the
System namespace:

 n IAsyncResult

 n ICloneable

 n IComparable

 n IDisposable

 n IFormatProvider

 n IFormattable

IComparable interface
Defines a generalized comparison method that a value type or class implements to create a type-specific
comparison method.

IDisposable interface
Defines a method to release allocated, unmanaged resources

IConvertible interface
Provides methods to convert the value of an instance of an implementing type to a common language
runtime type with an equivalent value. The types are Boolean, SByte, Byte, Int16, UInt16, Int32, UInt32,
Int64, UInt64, Single, Double, Decimal, DateTime, Char and String. If the conversion cannot be executed, an
InvalidCastException error is thrown.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

ICloneable interface
Supports the creation of a new instance of a class with the same value as the original.

IEquatable interface
Provides a generalized method that a value type or class implements to create a type-specific method to
determine equality of instances. This interface is new to the .NET Framework 2.0.

IFormattable interface
Allows you to format the value of an object into a string representation.

2.7 Controlling interactions between
application components by using events and delegates
Delegate class
A Delegate represents a pointer to an individual object method or a static class method. Within the .NET
Framework, callbacks from one object to another are supported by the Delegate class. Unlike other classes,
a Delegate class has a signature, like a function. Programmers do not typically use the Delegate class
directly, instead using a wrapper provided by the programming language. Thus, for an object to receive an
event, it provides the sender a delegate. The sender calls the function on the delegate to signal the event.

EventArgs class
The EventArgs is the base class for classes containing event data. This class is used by events that do not
pass state information to an event handler when an event is raised.

EventHandler delegates
If you have been developing applications in ASP.NET or Windows Forms, you are familiar with the ge-
neric delegate type EventHandler. The EventHandler is contained by the System Namespace and has the
following signature:

 VB
 Public Delegate Sub EventHandlerName(ByVal sender as Object, ByVal e As
 EventArgs)

 or

 C#

 public delegate void eventhandlername(object sender, eventargs e)

The first parameter, sender, is based on the generic object type and passes a reference to the event source
object. The e parameter is an object of EventArgs, or the actual event data (if available) that derives its class
from EventsArgs type. If there is no additional parameter information, the value of the e object is set to
EventArgs .Empty or Nothing. When parameters are passed in the e object, the object must be created from
a class that derives from the EventArgs class.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implementing service processes, threading
and application domains in a .NET
Framework application

3.1 Use Implement, install, and control a service

System.ServiceProcess namespace
Windows services are processes that run in the background, in their own session without a user interface.
The.NET Framework makes it easy to develop applications to run as Windows services. The System .Service
Process namespace provides the classes to implement, install and control Windows services. Windows
services are defined as “long-running executables that run without a user interface.”

Note: Services are installed using an installation utility such as InstallUtil.exe. The System .ServiceProcess namespace
contains installation classes to write required system information to the registry. For example: InstallUtil.exe

[ServiceExeFile]

Some key features about services are:

 n The executable file created by the service application project must be installed and started
before the project can be debugged by attaching to the service’s process.

 n The service must be installed and registered using installation components, thereby creating an
entry in the Windows Service Control Manager.

 n The Main method of the service application must contain the Run command for the service.

 n Service applications run in their own window station that cannot interact with the client user
interface (e.g. display dialog boxes, error messages). Therefore, errors or event messages must be
written to the Windows event log (or developer-created log file).

 n Service applications are executed in their own security model using a specified user account, not
the current user account.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Members exposed by the ServiceProcess class are :

Classes

Name Description

ServiceBase Provides the base class for a service that will exist as
part of a service application.

ServiceController Represents the Windows service and allows you to
connect to a running or stopped service, get informa-
tion about it and control it.

ServiceControllerPermission Allows control of code access security permissions for
service controllers.

ServiceControllerPermissionAttribute Allows declarative service controller permission checks.

ServiceControllerPermissionEntry The smallest unit of a code access security permission
that is set for the ServiceController .

ServiceControllerPermission
EntryCollection

A strongly-typed collection of ServiceControllerPermis-
sionEntry objects.

ServiceInstaller Installs a class that extends ServiceBase to implement
a service (class is called by the install utility when
installing a service application.)

ServiceProcessDescriptionAttribute Specifies a description for a property or event.

ServiceProcessInstaller Installs an executable containing classes that extend
ServiceBase (is called with the service application is
installed).

TimeoutException The exception that is thrown when a specified time-
out has expired.

Structures

Name Description

SessionChangeDescription Provides the reason for a Terminal Services
session change.

This is new in the .NET Framework version 2.0.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Enumerations

Name Description

PowerBroadcastStatus The system's power status

ServiceAccount A service's security context (which defines its logon type)

ServiceControllerPermissionAccess Access levels used by ServiceController permission
classes

ServiceControllerStatus Indicates the current state of the service

ServiceStartMode Indicates the start mode of the service

ServiceType The type of the service

SessionChangeReason The reason for a Terminal Services session
change notice.

This is new in the .NET Framework version 2.0.

Inherit from ServiceBase class
The ServiceBase class is the base class for Windows services. To create a service, your class will inherit
(directly or indirectly) from this class. You will define specific actions for the OnStart, OnPause, OnStop and
Continue methods, as well as custom actions when the system shuts down.

ServiceController class and ServiceControllerPermission class
The ServiceController class allows you to connect to an existing service. You can read information about
the service and manipulate it (start, stop, pause, continue or execute custom commands on the service).
When you create an instance of the ServiceController object, you must set the computer name and service
name to which you want to connect. The MachineType property is set to the local computer by default and
must be modified only if you are connecting to another computer. Typically, the ServiceController compo-
nent is used in an administrative capacity.

Note: Because the Service Control Manager (SCM) does not support custom commands, you must use the ServiceCon-

troller class to send custom commands to the Web service.

The ServiceControllerPermission class provides programmatic control of code access security permissions
for the ServiceController (adding permission access, removing permission access, etc).

ServiceInstaller and ServiceProcessInstaller class
The ServiceInstaller is called by the service installation utility when the service is being installed to write
registry values associated with the service to the subkey in the HKEY_LOCAL_MACHINE\System\Current-
ControlSet\Services registry key. The subkey identifies the name of the service and the executable or .dll
file to which the service belongs.

The ServiceProcessInstaller class is called by the service installation utility when the service is being installed
to install the executable containing the classes that extend the ServiceBase. It writes registry values for the
service being installed. One property you can specify when installing a service is what account the service
application runs under (if not the current logged-in account). You can specify the username and password of

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

an account, and specify that the service run under the computer’s System account, a local or network service
account. Remember that the computer system account is different from the Administrator account.

SessionChangeDescription structure and SessionChangeReason enumeration
The SessionChangeDescription structure (new in the .NET Framework version 2.0) identifies the reason for a
Terminal Services session change while the SessionChangeReason enumeration (new in the .NET Frame-
work version 2.0) provides the reason for a Terminal Services session change notice (for example, the
console session has been connected or disconnected, the session has been locked or unlocked, the user
has logged on or logged off, etc.).

3.2 Develop multithreaded .NET Framework applications

System.Threading namespace
The System .Threading namespace provides interfaces and classes that enable multithreaded applications.
Multithreading techniques allow developers to create scalable, efficient applications that can execute
multiple tasks concurrently.

Thread class
The Thread class is the core class providing methods to create threads, and control threads (for example:
suspend, stop and destroy), set their priority and get the threads’ status. Using this class, a process can
create one or more threads that execute part of the program code associated with the process. When the
thread has been started, it will continue to execute until it has finished.

The Thread constructor initializes a new instance of the Thread class. This constructor is overloaded; there-
fore, the following signatures are supported:

 n Thread (ParameterizedThreadStart) - Indicates a delegate object to be passed to the thread
when the thread is started

 n Thread (ThreadStart)

 n Thread (ParameterizedThreadStart, Int32) - Indicates a delegate object to be passed to the
thread when the thread starts; specifies a maximum stack size

 n Thread (ThreadStart, Int32) - Specifies a maximum stack size for the thread

Some of the public properties exposed by the Thread class are:

 n ApartmentState - Assigns or returns the apartment state of the thread.

 n CurrentContext - Returns the current context in which the thread is executing. This property
is static.

 n CurrentCulture - Assigns or returns the culture for the current thread.

 n CurrentPrincipal - Assigns or returns the thread's current principal used for role-based security.
This property is static.

 n CurrentThread - Returns the currently executing thread. This property is static.

 n CurrentUICulture - Assigns or returns the current culture used by the Resource Manager to look
up culture-specific resources at run time.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n ExecutionContext - Returns an ExecutionContext object containing information regarding the
various contexts of the thread.

 n IsAlive - Returns a value indicating the execution status of the thread (is it currently executing).

 n IsBackground - Assigns or returns a value indicating whether or not a thread is a
background thread.

 n IsThreadPoolThread - Returns a value indicating whether or not a thread belongs to the man-
aged thread pool.

 n ManagedThreadId - Returns a unique identifier for the managed thread.

 n Name - Assigns or returns the name of the thread.

 n Priority - Assigns or returns a value indicating a thread’s scheduling priority.

 n ThreadState - Returns a value containing the states of the thread.

Some of the public Methods exposed by the Thread class are:

 n Abort - Raised a ThreadAbortException in the thread indicating that the thread should be
aborted (thus terminating the thread).

 n AllocateDataSlot - Allocates an unnamed data slot on all the threads. This method is static.

 n AllocateNamedDataSlot - Allocates a named data slot on all threads. This method is static.

 n BeginCriticalRegion - Signals host that execution is about to enter a region of code in which the
effects of a thread abort or unhandled exception might jeopardize other tasks in the application
domain. This method is static.

 n BeginThreadAffinity - Signals host that managed code is about to execute instructions that
depend on the identity of the current physical operating system thread. This method is static.

 n EndCriticalRegion - Signals a host that execution is about to enter a region of code in which
the effects of a thread abort or unhandled exceptions are limited to the current task. This
method is static.

 n EndThreadAffinity - Signals a host that execution is about to enter a region of code in which
the effects of a thread abort or unhandled exception are limited to the current task. This
method is static.

 n FreeNamedDataSlot - Eliminates the association between a name and a slot for all of the threads
in the current process. This method is static.

 n GetApartmentState - Gets an ApartmentState value indicating the apartment state.

 n GetCompressedStack - Gets a CompressedStack object that can capture the stack for the thread.

 n GetData - Returns the value from the specified slot on the current thread, within the current
thread's current domain. This method is static.

 n GetDomain - Gets the current domain in which the thread is running. This method is static.

 n GetDomainID - Gets a unique application domain identifier. This method is static.

 n GetNamedDataSlot - Gets a named data slot. This method is static.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Interrupt - Raises the ThreadInterruptedException when the thread is in a blocked state (Wait-
SleepJoin thread state), thus interrupting the thread.

 n Join - Blocks the calling thread until a thread terminates.

 n MemoryBarrier - Synchronizes memory access as follows: The processor executing the current
thread cannot reorder instructions so memory accesses before the call to MemoryBarrier ex-
ecute after memory accesses that follow the call to MemoryBarrier. This method is static.

 n ResetAbort - Cancels an Abort requested for the thread. This method is static.

 n Resume - Resumes a thread that was previously suspended.

 n SetApartmentState - Sets the apartment state of a thread before it is started.

 n SetCompressedStack - Applies a captured CompressedStack to the current thread.

 n SetData - Sets the data in the specified slot on the currently running thread. This method is static.

 n Sleep - Blocks the current thread for a specified number of milliseconds. This method is static.

 n SpinWait - Causes a thread to wait the number of times indicated by the iterations parameter.
This method is static.

 n Start - Starts the thread to be scheduled for execution.

 n Suspend - Suspends the thread (unless it is already suspended, in which case it has no effect).

 n ToString - Gets a String that represents the current Object.

 n TrySetApartmentState - Sets the apartment state of a thread before it is started.

 n VolatileRead - Gets the value of a field. The value is the latest written by any processor in a
computer, regardless of the number of processors or the state of processor cache. This
method is static.

 n VolatileWrite - Writes a value to a field immediately, so the value is visible to all processors in the
computer. This method is static.

ThreadPool class
The ThreadPool class provides a pool of threads used to post work items, process asynchronous Input/
Output operations, wait on behalf of other running threads and process timers. Threadpools are helpful
because many threads spend considerable time in a sleeping state (either waiting for an event to occur or
intentionally sleeping only to awaken periodically to execute).

ThreadStart delegate and ParameterizedThreadStart delegate
The ThreadStart delegate simply represents a method that executes on a thread. The thread will begin ex-
ecuting once the System .Threading .Thread .Start method is called. The ParameterizedThreadStart delegate
(new to the .Framework 2.0) also represents a method that executes on the thread that allows an object to
pass that contains data for the thread procedure.

Timeout class, Timer class, TimerCallback delegate, WaitCallback delegate, aitHandle class, and
WaitOrTimerCallback delegate
The Timeout class contains a constant used by the Threading namespace to specify an infinite amount
of time. Infinite is the only member contained by the Timeout class used to specify the waiting period. Its
value is a constant which accepts an integer timeout value. The Timeout class also has several public meth-
ods inherited from the Object class (namely, Equals, GetHashCode, GetType, ReferenceEquals, and ToString).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The Timer class provides a mechanism to fire off an asynchronous call to execute a method based on an
amount of time. The TimerCallback delegate specifies the actual method to execute when the timer fires.
The delegate must be specified when the timer is initially created and cannot be modified. The method
that is executed is not executed on the thread that created the timer, but on a ThreadPool thread handled
by the system. Also, when the Timer is created, you also specify how long to wait until the Timer starts and
how long to wait between subsequent executions. These settings can later be modified using the Change
method (the Timer can also be disabled using this method).

The WaitHandle is signaled once the timer has been disposed (when manually disposed using the Dispose
method or by the garbage collector). The WaitHandle class manages operating system objects waiting for
exclusive access to shared resources. Typically, it is used as a base class for synchronization objects.

Note: When using a Timer object, you must keep a reference to the object (even if it is still active) in order to avoid hav-

ing the garbage collector dispose of the object.

The TimerCallback delegate represents the method that handles calls from the Timer object. The Timer-
Callback delegate executes the method once after the start time has elapsed, then executes the method
once per timer interval until the Dispose method is called on the Timer or the Timer .Change method is
called passing the interval value of Infinite. The WaitCallback delegate represents a callback method to be
executed by a Threadpool thread. The WaitOrTimerCallback delegate represents a method called when the
WaitHandle is signaled or when it times out.

ThreadState enumeration and ThreadPriority enumeration
While the thread is executing, its state is available from the ThreadState property. All possible execution
states are represented. Therefore, once the thread is created, it is in one of the states displayed below
until it terminates.

Thread State Members

Aborted The thread is now dead but its state has not yet changed to Stopped

AbortRequested The Thread .Abort method has been invoked on the thread and it has not yet
received the pending System .Threading .ThreadAbortException that will at-
tempt to terminate it

Background The thread is executed as a background thread. This state is controlled by set-
ting the Thread .IsBackground property

Running The thread was started. The thread is not blocked and there is no pending
ThreadAbortException

Stopped The thread was stopped

StopRequested The thread is being requested to stop (for internal use only)

Suspended The thread has been suspended

SuspendRequested The thread is being requested to suspend

Unstarted The Thread .Start method has not been invoked on the thread

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

WaitSleepJoin The thread is blocked (as a result of calling Thread .Sleep or Thread .Join, of
requesting a lock or of waiting on a thread synchronization object such as
ManualResetEvent)

A thread can be in more than one state at a time.

The ThreadPriority enumeration indicates the scheduling priority of a Thread (all possible priority values
are represented). Every thread is assigned a priority (by default they are assigned a Normal priority if not
indicated otherwise). The priority of a Thread will not affect the Thread’s state.

Thread Priority Members

AboveNormal Can be scheduled after threads with Highest priority but before those with
Normal priority.

BelowNormal Can be scheduled after threads with Normal priority but before those with
Lowest priority.

Highest Can be scheduled before threads with any other priority.

Lowest Can be scheduled after threads with any other priority.

Normal Can be scheduled after threads with AboveNormal priority but before those
with BelowNormal priority. This is the default priority.

ReaderWriterLock class
The ReaderWriterLock class allows you to lock access to resources for readers and writers separately. That
is, you can lock single writers to access the data in a resource (for a single thread) or lock multiple readers
to access data in a resource (for multiple threads) at the same time. A single thread can hold a write block
or a reader block but not both simultaneously. Therefore, writer threads and reader threads are queued
separately. Because threads can be queued (waiting for the previous lock to be released), most methods
for the ReaderWriterLock class accept time out values (expressed in milliseconds).

AutoResetEvent class and ManualResetEvent class
The AutoResetEvent class notifies a waiting thread that an event has occurred. This class allows threads to
communicate with one another by signaling. A Thread waits for a signal by calling the WaitOne method
of AutoResetEvent class, When the Thread controlling a resource is ready to make the resource available, it
calls the Set method of AutoResetEvent class.

IAsyncResult interface (Refer System namespace)
The IAsyncResult interface represents the status of an asynchronous operation. This interface is implemented
by classes whose methods need to operate asynchronously. Implementing this interface allows objects to
store state information and allows threads to be signaled when operations on shared resources complete.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

EventWaitHandle class, RegisterWaitHandle class,
SendOrPostCallback delegate, and IOCompletionCallback delegate
The EventWaitHandle class (new to the .NET Framework 2.0) represents a thread synchronization event
that allows threads to communicate with one another by signaling. One or more threads will block the
EventWaitHandle until the blocked thread is release by another thread calling the Set method.

The RegisterWaitHandle class is handle that has been registered when calling the RegisterWaitForSingleOb-
ject method (which registers a delegate waiting for a WaitHandle).

The SendOrPostCallback delegate (new to the .NET Framework 2.0) represents a method to execute when
a message is to be dispatched to a synchronization context.

The IOCompletionCallback delegate receives an error code, number of bytes and overlapped value type
when an I/O operation completes on a thread pool.

Note: The IOCompletionCallback delegate is not CLS compliant.

Interlocked class
The Interlocked class provides a mechanism for applying atomic operations to variables that are being shared
by multiple threads. When the schedule switches contexts, a variable could be updated by one thread while
other threads are accessing the same variable, or when multiple threads are executing concurrently on
separate processors. While the Interlocked class works with only a limited number of .NET types, this method
does help protect against errors. This class provides only a limited number of methods. Specifically, it can be
used to Increment a variable, Decrement a variable, Exchange values of specified variables, Read a number,
and Add two integers (replacing the first with the sum). Because these operations are performed as atomic
operations, they are executed as one step rather than three, as on most computers.

ExecutionContext class, HostExecutionContext class,
HostExecutionContextManager class, and ContextCallback delegate
The ExecutionContext class (new to the .NET Framework 2.0) manages the execution context of the current
thread by providing a single container for all the information relevant to a logical thread’s execution and
by providing the capability for code to capture and transfer context across user-defined asynchronous
points (managed by the Common Language Runtime). This includes security context, call context, syn-
chronization context, localization context and transaction context.

Note: An ExecutionContext associated with one thread cannot be set on another thread. Attempting to perform this

operation will throw an exception. However, you can make copy of the ExecutionContext object.

The HostExecutionContext class (new to the .NET Framework 2.0) encapsulates/propagates the host execu-
tion context across threads.

The HostExecutionContextManager class (new to the .NET Framework 2.0) allows the CLR (Common Lan-
guage Runtime) host to participate in execution context. Specifically, the CLR would call the manager when
the ExecutionContext .Run method is called (which runs a method in the current execution context on the
current thread), thereby allowing the current host to participate in the flow of the execution context.

The ContextCallback delegate (new to the .NET Framework 2.0) represents a method to be called within
the new context. This method is used by the ExecutionContext .Run method and SecurityContext .Run
method. Once the method has completed, the context is then restored to the state it was in before the
method was called.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

LockCookie structure, Monitor class, Mutex class, and Semaphore class
The LockCookie structure is a value type that provides defines an object lock that implements single
writer/multiple reader semantics.

The Monitor class allows you to synchronize access to objects by granting an object lock to an object on a
single thread. Objects locks can restrict access to blocks of code (called critical sections). While one thread
owns the lock for an object, no other threads can acquire that lock. The Monitor class locks reference type
objects, not value types.

The Mutex class is a synchronization primitive used for interprocess synchronization to grant exclusive
access to a shared resource to one thread. When a thread acquires a Mutex object, other threads are sus-
pended and must wait until the first thread releases the Mutex .

The Semaphore class (new to the .NET Framework 2.0) is used to throttle usage of a resource by limit-
ing the number of threads that can access the resource or pool of resources concurrently. When a new
instance of a Semaphore is created, you specify the number of concurrent used slots and number of maxi-
mum slots in the kernel object.

3.3 Create a unit of isolation for common language runtime in a
.NET Framework application by using application domains

System namespace
Application domains provide isolated environments for applications to execute, providing the ability to
call external assemblies while providing optimal security and performance. An application domain is a
logical container allowing multiple assemblies to run within a single process. However, assemblies are not
permitted to access other assemblies’ memories, ensuring they are secure. Multiple assembles can be ex-
ecuted in separate application domains without having to launch separate processes. Another advantage
to using application domains rather than launching additional processes is that processes are managed
by the operating system but application domains are managed by the CLR.

Create an application domain.
Application domains are created using the System .AppDomain class.

An instance of this class is created, then an assembly is executed within that domain. To create an ap-
plication domain, you call the AppDomain .CreateDomain method. This method is overloaded so there
are multiple signatures that can be used to create a new application domain. Once you have created the
new application domain, you can launch the assembly within that domain by calling the ExecuteAssembly
method and specifying the complete file path the assembly as displayed below:

 VB
Dim myDomain As AppDomain = AppDomain.CreateDomain(“MyDomain”)
myDomain.ExecuteAssembly(“Assembly.exe”)

 or

 C#
 AppDomain mydomain = AppDomain.CreateDomain(“MyDomain”);
 mydomain.ExecuteAssembly(“Assembly.exe”);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The ExecuteAssembly method has overloads (multiple signatures) that allow the capability to pass com-
mand-line arguments. Another way to execute assemblies is to reference the assembly by name using the
ExecuteAssemblyByName method of the AppDomain class as displayed below:

 VB

Dim myDomain As AppDomain = AppDomain.CreateDomain(“MyDomain”)
myDomain.ExecuteAssemblyByName(“Assembly”)

 or

 C#
 AppDomain mydomain = AppDomain.CreateDomain(“MyDomain”);
 mydomain.ExecuteAssemblyByName(“Assembly”);

Unload an application domain.
Application domains can be unloaded at any time, thus freeing up resources. To unload an application
domain, call the Unload method as displayed below:

 VB

Dim myDomain As AppDomain = AppDomain.CreateDomain(“MyDomain”)
AppDomain.Unload(myDomain)

 or

 C#
 AppDomain mydomain = AppDomain.CreateDomain(“MyDomain”);
 AppDomain.Unload(mydomain);

In.NET Framework 2.0, a thread is dedicated to unloading application domains. Therefore, once a thread
calls the Unload method, the domain is marked for unloading and the dedicated thread trying to unload
the domain and all threads in the domain are aborted. Three possible exceptions could be thrown when
attempting to unload the domain. They are: ArgumentNullException, in which the domain was a null refer-
ence; CannotUnloadAppDomainException, in which the domain could not be unloaded; and Exception, in
which an error occurred during the unload process.

Configure an application domain.
An application domain can be configured using the AppDomainSetup class.
When changing the properties of the AppDomainSetup class, the existing AppDomain is not affected. Only
newly created AppDomains are affected once the CreateDomain method is called passing the AppDomain-
Setup as a parameter. Properties of the application domain are configured for AppDomainSetup object,
then passed to the AppDomain .CreateDomain method along with the Evidence object.

Retrieve setup information from an application domain.
Setup information from the current application domain can be retrieved using the AppDomain .CurrentDo-
main .SetupInformation object. The CurrentDomain property returns current application information for the
current Thread. The AppDomain .CurrentDomain .SetupInformation object returns the application domain
configuration for this instance of the application domain.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Load assemblies into an application domain
Assemblies are loaded into an application domain using the AppDomain .Load method. This method is
overloaded so multiple signatures are available to call this method. The assembly can be loaded passing
the assembly name, the assembly display name, or the common object file format (COFF)-based image
that contains the emitted assembly. Other signatures also provide the ability to pass the Evidence object.

Embedding configuration, diagnostic,
management, and installation features into
a .NET Framework application

4.1 Embed configuration management
functionality into a .NET Framework application

System.Configuration Namespace
The System .Configuration namespace provides a programming model to handle application configuration
information. This namespace is the repository for all the classes, interfaces, delegates and enumerations
that developers can use for application configuration. The System .Configuration namespace allows you
to set and retain application settings without knowing the values in advance. In the .NET Framework 2.0,
you can manage the configuration settings in an object-oriented manner. Another major benefit is that
you can read, write and modify settings without having to use the Windows Registry, for a more secure
application model and greater cross-platform compatibility.

Configuration class and ConfigurationManager class
The Configuration class (new to the .NET Framework 2.0) represents the configuration file for the particular
physical entity such as a computer, or a logical entity such as an application or resource (located on the
local system or a remote system).

Note: If no configuration exists for the specified entity, the Configuration object represents the default configuration

settings defined by the machine.config file.

The ConfigurationManager class provides programmatic access to the configuration files for an applica-
tion. The ConfigurationManager class typically retrieves or stores information for Winform or console
applications. While it can be used for ASP.NET applications, Web applications should use the WebConfigu-
rationManager class.

You must use the open methods made available by the WebConfigurationManager object (for Web ap-
plications) or by ConfigurationManager object (for client applications) to access the Configuration class.
These methods return a handle to the Configuration object. You can then use the methods and properties
of the Configuration object to manage the configuration settings. Configuration settings are stored within
similarly grouped settings. To read configuration information, use the GetSection or the GetSectionGroup
methods (new to the .NET Framework 2.0) to return specific configuration information by the Configura-
tionSection object (described below).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

ConfigurationElement class,
ConfigurationElementCollection class,
and ConfigurationElementProperty class
The ConfigurationElement class (new to the .NET Framework 2.0) represents a configuration element in a
configuration file as an XML element or section. You do not create an instance of the ConfigurationElement
object as it is an abstract class.

The ConfigurationElementCollection class (new to the .NET Framework 2.0) is a configuration element in a
configuration file that contains a collection of child elements. This class allows you to add new Configura-
tionElement elements to a ConfigurationSection.

The ConfigurationElementProperty class (new to the .NET Framework 2.0) specifies the property of the
configuration object. The Validator property allows you to validate the ConfigurationElementProperty by
returning a ConfigurationValidatorBase object.

ConfigurationSection class, ConfigurationSectionCollection class,
ConfigurationSectionGroup class, and ConfigurationSectionGroup
Collection class
The ConfigurationSection class (new to the .NET Framework 2.0) represents a section in the configuration
file. It allows you to implement a custom section type. This class can be extended to provide custom han-
dling for programmatic access to custom configuration sections. Custom configuration sections can be
created using a programmatic coding model or declarative/attributed coding model. Using the program-
matic model requires you need to create a property for each section attribute to get/set its value and add
it to the underlying ConfigurationElement base class. The declarative/attributed model allows you to define
a section attribute by using a property and setting its attributes.

The ConfigurationSectionCollection class (new to the .NET Framework 2.0) represents a collection of related
sections (ConfigurationSection objects) in the configuration file. You can iterate through the Configuration-
SectionCollection object to get a handle on a ConfigurationSection object.

The ConfigurationSectionGroup class (new to the .NET Framework 2.0) represents a group of related sections
(ConfigurationSection objects) in the configuration file. Related sections are typically grouped together.

The ConfigurationSectionGroupCollection class (new to the .NET Framework 2.0) represents a collection of
ConfigurationSectionGroup objects. This class iterates through the collection of ConfigurationSectionGroup
objects. The collection can be accessed using the SectionGroups property.

Implement ISettingsProviderService interface
The ISettingsProviderService interface (new to the .NET Framework 2.0) enables an application to define an
alternate application settings provider. This interface exposes only one method, GetSettingsProvider, which
returns the settings provider compatible with the specified settings property.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement IApplicationSettingsProvider interface
The IApplicationSettingsProvider interface (new to the .NET Framework 2.0) defines the extended capabili-
ties for client-based application settings providers. With this interface, programmers can create a custom
settings provider for customized application settings. This interface, derived from the SettingsProvider class
(providing basic storage and retrieval capabilities), allows programmers to provide additional standard-
ized functionality. This interface contains only three methods which are specifically designed to assist in
handling application version handling.

They are:

GetPreviousVersion Gets the value of the indicated settings property for a previous version of the
same application

Reset Resets the application settings associated with the indicated application to
their default values

Upgrade Indicates to the provider that the application has been upgraded (therefore,
the provider can upgrade its stored settings if appropriate)

ConfigurationValidatorBase class
The ConfigurationValidatorBase interface (new to the .NET Framework 2.0) is a base class for deriving a
validation class to create a custom validator. The custom validator can then be used to verify object values.

4.2 Create a custom Microsoft Windows Installer for the
.NET Framework components by using the System.
Configuration.Install namespace, and configure the .NET
Framework applications by using configuration files,
environment variables, and the .NET Framework Configuration
tool (Mscorcfg.msc)

Installer class
The Installer class is the base class that provides a foundation for custom installations in the .NET Frame-
work. Other specific installers in the .NET Framework are the AssemblyInstaller and ComponentInsaller. To
use the Installer class, take the following steps:

1. Inherit the Installer class

2. Override the Install, Commit, Rollback, and Uninstall methods

3. Add the RunInstallerAttribute to your derived class and set it to true

4. Put your derived class in the assembly with your application to install

5. Invoke the installers (e.g use InstallUtil.exe)

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

When using the Installer class, the entire installation succeeds or fails (when the Commit method is called
at the end of the installation). If the install fails, the Installer class will undo any changes that have been
made. Some methods made available by the Installer class are:

 n Commit – Signals that the installation was a success and changes should be persisted

 n Rollback – Signals that an error occurred during the installation and that all modifications should
be undone

 n Uninstall – Allows you to completely undo a previously successful installation

AssemblyInstaller class
The AssemblyInstaller class is part of the System .Configuration .Install Namespace that loads an assembly
and runs installers on it. This class can launch an installer programmatically.

ComponentInstaller class
The ComponentInstaller class is part of the System .Configuration .Install Namespace that specifies an install-
er that copies properties from a component at the time of installation. This class can launch an installer
programmatically. When inheriting from the ComponentInstaller class, you must override the CopyFrom-
Component method and may need to override the Install and UnInstall methods.

ManagedInstallerClass class
The ManagedInstallerClass class (derived from the System.Configuration.Install Namespace) is meant to
support the .NET Framework infrastructure. Programmers should not use it within their code.

InstallContext class
The InstallerContext class (derived from the System.Configuration.Install Namespace) contains informa-
tion about the current installation. The InstallerContext object is created by an installation executable that
installs assemblies (e.g., InstallUtil.exe). When the installation executable is run, it invokes the InstallerCon-
text constructor passing any parameters or default log-file path information. Before the methods of the
Installer object are called, the installation program sets the Context property of the Installer to the newly
created instance of the InstallerContext. If the Installer contains an installer collection (in the Installers prop-
erty), the Context property of each contained Installer is also set.

InstallerCollection class
The InstallerCollection class contains a collection of installers to be run during an application/assembly
installation. Installers can be added to the collection with the Add method (to add a single installer to the
collection), the AddRange method (to add multiple installers to the collection), or the Insert method (to
add a single installer to the collection at a specified index).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

InstallEventHandler delegate
The InstallEventHandler delegate represents a method that will handle events of the Installer class, includ-
ing: BeforeInstall, AfterInstall, Committing, Committed, BeforeRollback, AfterRollback, BeforeUninstall, and
AfterUninstall. When the InstallEventHandler delegate is created, the method that will handle the event is
specified. To associate one of these events to your custom event handler, you need to add an instance of
the delegate to the event. Your event handles will then be called whenever the event is triggered (unless
the delegate is removed).

Configure a .NET Framework application by using
the .NET Framework Configuration tool (Mscorcfg.msc)
The .NET Framework 2.0 Configuration tool enables programmers to manage most aspects of the as-
sembly configuration (the assembly cache, assembly configuration, code access security policies, remote
services and individual programs). Like the .NET Framework 1.1 Configuration tool, the .NET Framework 2.0
Configuration tool runs as a Microsoft Management Console snap-in. The details of these tasks are outside
the scope of this book but should be reviewed before the exam. For more information, refer to the help
provided by the .NET Framework 2.0 Configuration tool, the book .NET Framework 2 .0 Application Develop-
ment Foundation training kit, or Microsoft’s Web support.

4.3 Manage an event log by using
the System. Diagnostics namespace

Write to an event log
Programmers know the Windows Event Log, which allows you to record information regarding a software
application (or hardware) that might be useful in tracking, supporting and diagnosing an application’s
state, issues and events. The EventLog class (contained within the System .Diagnostic namespace) allows
programmatic reading, writing or deleting event logs; creating or deleting event sources; or responding to
event entries. You can create an event log while creating an event source.

When writing to an event log, you need to specify or create a new event Source. The Source object will
register the application with the event log as a valid entry. The name assigned to the Source object must
be unique and not identified as another Source on the same system. However, a single event log can be
associated with multiple sources.

Note: The Source is required only when writing to the event log but not when reading it. The WriteEntry method
provides a mechanism to write to the EventLog. This method is simple You need only provide the entry string and entry
type but it provides 10 overloads to allow more sophisticated logging when required.

You will be able to write only one event at a time with the Source object. When using the CreateEvent-
Source method, if the log specified does not exist on the current system, the log will automatically be
created and the application will be registered as the Source.

You can also specify EventLogEntryType to indicate if the entry is an error, warning or information entry
type. You can specify the EventID displayed in the Type column and Category parameters displayed in the
Category column, and attach binary data.

An example of writing to the event log is shown in the “Create a new event log” section.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Read from an event log
To read from a log, you must set the Log name and the MachineName properties for the EventLog object.
If you do not specify the MachineName, the local computer is assumed (specified as “.”). After you have
instantiated a handle on an EventLog object, you can use the Entries property of the EventLog to return an
EventLogEntryCollection of EventLogEntry objects and then iterate through the entries. An example of read-
ing from the event log is displayed below:

 VB

Dim myLog As New EventLog(“LogExample”)
For Each myLogEntry As EventLogEntry in myLog.Entries
 Console.WriteLine(myLogEntry.Source & “- “ & myLogEntry.Message)
Next

 or

 C#
 EventLog myLog = new EventLog(“LogExample”);
 Foreach (EventLogEntry myLogEntry in myLog.Entries)
 {
 Console.WriteLine(myLogEntry.Source & “- “ & myLogEntry.Message);
 }

You can also retrieve a collection of logs rather than a single log and its entries using the GetEventLogs method.

Create a new event log
To create an event log, you simply need to create a new EventLog object and specify the Source property.
An example of this code is displayed below:

 VB

Dim myLog As New EventLog(“LogExample”)
myLog.Source = “LogExample”
myLog.WriteEntry(“My first log entry”, EventLogEntryType.Information)

 or

 C#
 EventLog myLog = new EventLog(“LogExample”);
 myLog.Source = “LogExample”;
 myLog.WriteEntry(“My first log entry”, EventLogEntryType.Information);

You can also use the EventLog class to create custom events logs viewable from the system event viewer.

Note: Windows 2000 and XP have three default logs: Application, Security, and System. Other applications may also
create unique event logs. For example, the Office 2007 beta installation creates two new event logs: “Office Diagnostics”

and “Office Sessions” and Internet Explorer 7 (Beta 3) creates an “Internet Explorer” event log.

Event logging uses disk space and processor time. If your log becomes full, your code will throw excep-
tions when trying to write additional entries to the log. Use the event log judiciously for essential infor-
mation and error logging. Do not use the EventLog object in a partial trust setting; doing so introduces a
security vulnerability.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

4.4 Manage system processes and monitor the performance
of a .NET Framework application by using the diagnostics
functionality of the .NET Framework 2.0

Get a list of all running processes
A process is basically an isolated application, or task, using one or more threads. An instance of a Process
object can be referring to a process running on a local machine or on a remote machine. One of the fol-
lowing methods can be used to get a list of processes:

 n GetCurrentProcess – returns a new process component and associates it with the process
resource running the calling application

 n GetProcessById – creates a new process component and associates it with the process
resource specified

 n GetProcessesByName – creates an array of new Process components and associates them with
the existing process resources that all share the specified process name

 n GetProcesses - creates an array of new Process components and associates them with the exist-
ing process resources

Retrieve information about the current process
The GetCurrentProcess method creates and returns a new process instance and associates it with the cur-
rent active process resource on the local computer.

Get a list of all modules that are loaded by a process
The Modules property gets a list of all the modules loaded by a process. A module is defined as .dll or .exe
file that is loaded into a particular process. Using the ProcessModule, you can view information about the
module (for example, the name, file name, and memory details).

PerformanceCounter class,
PerformanceCounterCategory,
and CounterCreationData class
The PerformanceCounter class represents the Windows operating system performance counter component.
Values written to a PerformanceCounter object are stored in the Windows registry. This class allows object-ori-
ented collection and retrieval. Windows has built-in performance counters to measure various resources.

The PerformanceCounterCategory class allows you to manage and manipulate PerformanceCounter objects
and their categories of performance counters. Counters related to the same performance object are
grouped into categories that indicate a common focus. Some of the frequent categories used are: Cache,
Memory, Objects, PhysicalDisk, Process, Processor, Server, System and Thread.

The CounterCreationData class serves as a container object that holds pertinent properties needed to cre-
ate a PerformanceCounter object such as the counter type, counter name and Help.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Start a process both by using and by not using command-line arguments
A process is started by calling the Start method of the Process class. Since this method is overloaded with
five other signatures, a Process can be started by passing parameters and/or using the command line. The
methods available to start a process and a description on how they are use are displayed below:

 n Start() - Start the process using the information in the StartInfo property of the Process object

 n Start(ProcessStartInfo) - Start the process specified by the ProcessStartInfo parameter

 n Start(String) - Start the process using the name of the document or application file specified by
the String parameter.

 n Start(String, String) - Start the process using the name of the document or application file speci-
fied by the String parameter and pass a set of command-line arguments specified in the second
String parameter

 n Start(String, String, SecureString, String) - Start the process specifying the name of the applica-
tion, a username, a password and a domain

 n Start(String, String, String, SecureString, String) - Start the process specifying the application
name, a set of command-line arguments, a username, a password and a domain

Note: When values specified in the String parameter are separated by spaces, they are considered separate arguments.

StackTrace class
The StackTrace class represents a stack trace which is an ordered collection of one or more StackFrame ob-
jects (the StackTrace object can hold up to 512 StackFrame objects). This class allows you to view the state
of the .NET runtime’s call stack at that time to better debug and diagnose application issues and problems.
When developing applications, the class will provide more useful information when the application is built
using the Debug build configuration because it includes Debug symbols.

StackFrame class
The StackFrame class represents a function call on the call stack for the current thread. When a method is
called, a StackFrame object is added to the stack. Subsequent methods are pushed onto the stack in a last-
in, first-out (LIFO) order. Each method is executed and removed from the stack, thus using the StackTrace
class information regarding the application’s state as it processes the methods. The StackFrame always
includes MethodBase information; it may include file name, line number and column number.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

4.5 Debug and trace a .NET
Framework application by using
the System.Diagnostics namespace

Debug class and Debugger class
The Debug class provides the methods and properties that programmers can use to debug their code.
Public properties exposed by the Debug class are:

 n AutoFlush - Sets or retrieves a value indicate if the Flush method should be called on the Listen-
ers after each write. This property is static.

 n IndentLevel - Sets or retrieves the indent level. This property is static.

 n IndentSize - Sets or retrieves the number of spaces to indent. This property is static.

 n Listeners - Gets a collection of listeners that monitor the debug output. This property is static.

Some of the public methods exposed by the Debug class are:

 n Assert - Evaluates a condition and displays a message if the condition is false. This method is static.

 n Close -Flushes the output buffer. Calls the Close method on all the attached listener objects. This
method is static.

 n Fail - Outputs a failure message. This method is static.

 n Flush - Flushes the output buffer. Buffered data is written to the Listeners collection. This
method is static.

 n Indent - Increments the indent level by one (used for formatting). This method is static.

 n Print - Writes a message to the trace listeners in the Listeners collection (followed by a line termi-
nator). This method is static.

 n ToString - Returns a String object that represents the current object

 n Unindent - Decrements the indent level by one (used for formatting). This method is static.

 n Write - Writes information about the Debug or Trace class listener objects in the Listeners collec-
tion. This method is static.

 n WriteIf - If a specified condition is met, writes information about the Debug or Trace class listener
objects in the Listeners collection. This method is static.

 n WriteLine - Writes information (followed by a line terminator) about the Debug or Trace class
listener objects in the Listeners collection. This method is static.

 n WriteLineIf - If a specified condition is met, writes information (followed by a line terminator)
about the Debug or Trace class listener objects in the Listeners collection. This method is static.

Several of the methods provided by the Debug class play a more important role for programmers. The
Assert method is particularly useful in debugging applications when you have code that you expect to
always evaluate to true or false. You can insert Debug .Assert statements into your code to trap instances
where the code does not evaluate to true (or false) as expected. This condition will cause the application to
automatically break into the debugger. Also useful is the Fail method. Unlike the Assert method, Fail does
not use an evaluation to trigger the debugger. It causes the Debugger to break when the method is trig-
gered and renders output regarding the failure.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The Write, WriteIf, WriteLine, and WriteLineIf methods are commonly used when debugging by allowing
you to send messages to the Output window. The Write and WriteLine methods send whatever output is
passed to the method while the WriteIf and WriteLineIf only write output if the specified condition is met.

The Print method works similarly to the various write methods except it sends the output to attached
listener objects.

The Debugger class allows you to communicate with the debugger.

The public field exposed by the Debugger class is:

 n DefaultCategory - The default category of a message with a constant

The public property exposed by the Debugger class is:

 n IsAttached - Sets or retrieves a value indicating whether a debugger is attached to the process.
This property is static.

Some of the public methods exposed by the Debugger class are:

 n Break - Signals a break to the debugger. This method is static.

 n IsLogging - Indicates if the Debugger is currently logging. This method is static.

 n Launch - Launches the Debugger and attaches it to a process. This method is static.

 n Log - Posts a message to the current debugger. This method is static.

 n ToString - Returns a String object that represents the current object.

Several of the methods provided by the Debugger class play a more important role for programmers. The
Break method allows programmers to set a breakpoint conditionally in code to signal a breakpoint to
the attached Debugger. If no Debugger is attached when this method is called, users will be prompted to
attach a Debugger. The Log method posts information to listener objects attached to the Debugger (if a
Debugger is present). This method takes three parameters to specify:

 n Level – a description of the importance of the message

 n Category – the category of the message (this value cannot exceed 256 characters or the value
will automatically be truncated to 256 characters)

 n Message – The message to log

If no Debugger is present, this method does nothing.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Trace class, CorrelationManager class, TraceListener class, TraceSource
class, TraceSwitch class, XmlWriterTraceListener class, DelimitedList
TraceListener class, and EventlogTraceListener class
The Trace class helps trace the execution of the code, allowing you to isolate and correct problems while
not interrupting or breaking a running application.

The CorrelationManager class (new to the .NET Framework 2.0) correlates trace events that are part of a
logical transaction (tagged with a unique identity) generated by a thread.

The TraceListener class provides an abstract base class for listeners who monitor trace and debug output.
To use the TraceListener class, you must have previously enabled tracing or debugging.

The TraceSource class (new to the .NET Framework 2.0) enables applications to trace the execution of code
and associate the trace messages with their source. Methods provided by the TraceSource class provide
capabilities to trace events, trace data and issue informative traces. The output can be controlled by the
configuration file settings.

The TraceSwitch class provides a multi-level switch to control tracing and debug output without recompil-
ing code. The TraceSwitch class allows you to filter messages and test the level of the switch. The Trac-
eSwitch settings can be modified by editing the configuration file settings.

The XmlWriterTraceListener class (new to the .NET Framework 2.0) indicates that trace or debugging infor-
mation should be output as XML-encoded data to a TextWriter or Stream object. The XmlWriterTraceListener
can be enabled/disabled using the configuration file settings for the application or a XmlWriterTraceLis-
tener object can be created directly within your application code.

The DelimitedListTraceListener class (new to the .NET Framework 2.0) indicates that trace or debugging
information should be output to a TextWriter or Stream object as delimited text. The actual delimiter is
specified by the Delimiter property.

The EventlogTraceListener class provides a simple listener to direct output from tracing or debugging to be
saved to the EventLog.

Debugger attributes
DebuggerBrowsableAttribute class
This class (new to the .NET Framework 2.0) determines if (and how) a member is displayed in a debugger
variable window. The display states allowed are:

1. Never: the member is not displayed in the data window

2. Collapsed: the member is displayed but collapsed by default

3. RootHidden: the member is not displayed but its constituent objects are (applicable for objects
like arrays or collections)

DebuggerDisplayAttribute class
This class (new to the .NET Framework 2.0) determines how a member is displayed in a debugger variable
window (for example, inserting captions before variable values, formatting length, or formatting strings).

DebuggerHiddenAttribute class
This class stops a breakpoint from being set inside a specified method or anything that it decorates and is
therefore ignored by the debugger.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

DebuggerNonUserCodeAttribute class
This class (new to the .NET Framework 2.0) indentifies a type or member that is not part of the user code
for the current application and is therefore ignored by the debugger.

DebuggerStepperBoundaryAttribute class
This class (new to the .NET Framework 2.0) indicates that the code following an attribute is to be executed
in run mode (not step mode). This class is relevant for code executing in the boundaries of the Debugger-
NonUserCodeAttribute.

DebuggerStepThroughAttribute class
This class tells the debugger that the indicated code should be stepped over and not display in the de-
bugging windows. You can still set a breakpoint in a method marked by this class.

DebuggerTypeProxyAttribute class
This class (new to the .NET Framework 2.0) specifies how a given type is displayed.

DebuggerVisualizerAttribute class
This class (new to the .NET Framework 2.0) specifies the visualizer for a given class. Support for visualizers
depends on the host debugger. Support for this capability was first available in Visual Studio 2005.

4.6 Embed management information
and events into a .NET Framework application

System.Management Namespace
The System .Management namespace provides management information and events about the current
system, devices and applications via the Windows Management Instrumentation (WMI) technology.

Retrieve a collection of Management objects by using the ManagementO-
bjectSearcher class and its derived classes.
The ManagementObjectSearcher class retrieves a collection of ManagementObjects based on a WMI query.
This class provides the following capabilities:

 n Enumerate all disk drivers, network adapters, and processes on a computer

 n Retrieve information about all network connections

 n Retrieve information about all services that are paused

ManagementQuery class
The ManagmentQuery class is a base class for all WMI queries (providing an abstract class for all manage-
ment query objects).

EventQuery class
The EventQuery class represents a query object used to query WMI event query objects.

ObjectQuery class
The ObjectQuery class represents a query object used to query instances and classes.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Subscribe to management events by using the ManagementEvent
Watcher class.
The ManagementEventWatcher class allows you to subscribe to temporary event notifications based on a
specific event query within the WMI. The steps to use the ManagementEventWatcher class are:

 n Instantiate a handle on a new ManagementEventWatcher object

 n Associate the object to an EventQuery object

 n Call the WaitForNextEvent method. This method will wait for the event specified by the query and
return it once it arrives.

 n Stop the notifications by calling the Stop method to cancel the subscription.

Implementing serialization and input/output
functionality in a .NET Framework application

5.1 Serialize or deserialize an object or an object graph by using
runtime serialization techniques.

System.Runtime.Serialization Namespace
Objects are serialized and deserialized so they they can be stored or transferred, then later re-created. Seri-
alizing converts an object (or objects) into a linear sequence of bytes to be stored or transferred; deserial-
izing converts a previously serialized sequence of bytes back into an object.

Serialization interfaces

1. IDeserializationCallback interface - indicates that a class is to be notified when the entire object
has been deserialized

2. IFormatter interface - provides functionality for formatting serialized objects. This interface is
implemented by any class identified as a formatter in the Serialization class.

3. IFormatterConverter interface - the base implementation of the IFormatterConverter interface
which uses the Convert class and the IConvertible interface

4. ISerializable interface - permits an object to control its own serialization and deserialization

Serilization attributes (all new to the .NET Framework 2.0):

1. OnDeserializedAttribute class –the method is called immediately after deserialization of the object

2. OnDeserializingAttribute class –the method is called during the deserialization of the object

3. OnSerializedAttribute class –the method is called immediately after serialization of the object

4. OnSerializingAttribute class –the method is called during the serialization of the object

5. OptionalFieldAttribute class - specifies that a field can be missing from a serialization stream pre-
venting BinaryFormatter and SoapFormatter from throwing an exception

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

SerializationEntry structure and SerializationInfo class
The SerializationEntry structure holds the value, Type object and name of a serialized object.
The SerializationInfo class stores all the data needed to serialize or deserialize an object.

ObjectManager class
The ObjectManager class keeps track of objects as they are deserialized.

Formatter class, FormatterConverter class, and
FormatterServices class
The Formatter class implements the base functionality for the CLR serialization formatters (though this
class is not CLS compliant). The Formatter class is an abstract base class for all runtime serialization format-
ters. It provides some helper methods for implementing the IFormatter interface.

The FormatterConverter class implements the base implementation of the IFormatterConverter interface
that uses the Convert class and the IConvertible interface.

The FormatterServices class provides static methods to help implement a Formatter for serialization.

StreamingContext structure
The StreamingContext structure provides the source and destination bits of a given serialized stream that a
formatter is using.

5.2 Control the serialization of an object into XML format by us-
ing the System.Xml.Serialization namespace.

Serialize and deserialize objects into XML format by using the
XmlSerializer class
The .NET Framework 2.0 provides several libraries for reading and writing XML files. The System .Xml .
Serialization namespace provides methods for converting objects to and from XML-formatted docu-
ments and streams.

To create a class that can be serialized using XML serialization:

1. Specify the class as public

2. Specify all members that are to be serialized as public (private and protected members will be
skipped during serialization)

3. Create a constructor with no parameters

The System .Xml .Serialization class provides several Attribute classes used to control the serialization. These
attributes (XMLArray, XMLAttribute, ZMLElement, XMRoot, XMLText, XMLType) can make a serialized class
conform to a specific XML requirement or schema.

You can implement XML Serialization interfaces to provide custom formatting for XML serialization. The IX-
mlSerializable Interface provides custom formatting for XML serialization and deserialization. This interface
can help control how your object is serialized or deserialized by the XmlSerializer or control the schema.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Several delegates and event handlers are provided by the System.Xml.Serialization namespace to handle
events and provide more control over the XML serialization. For example, XmlAttributeEventHandler pro-
vides a method that handles the UnknownAttribute , XmlElementEventHandler provides a method that
handles the UnknownElement event of an XmlSerializer, and XmlNodeEventHandler provides a method
that handles the UnknownNode event of an XmlSerializer.

5.3 Implement custom serialization
formatting by using the Serialization Formatter classes.
The System .Runtime .Serialization namespace provides two methods for formatting serialized data, Soap-
Formatter and BinaryFormatter.

SoapFormatter class
The SoapFormatter class serializes or deserializes an object, or a graph of connected objects, in SOAP
format. The SOAP format is XML-based, and a reliable way to serialize objects transmitted and read by non
.NET framework applications.

BinaryFormatter class
The BinaryFormatter class serializes or deserializes an object, or a graph of connected objects, in binary
format. For objects that will be serialized and deserialized by .NET Framework-based applications, this
formatter is an efficient mechanism.

5.4 Access files and folders by using the File System classes.

System.IO Namespace
The System .IO namespace provides types and members that allow reading and writing to files and data
streams as well as basic files and directory support. Essentially, the classes of the System .IO namespace al-
low you to navigate and manipulate files, directories and drives. The two types of classes are:

1. Informational – exposes all the system information about the file system objects (files, directo-
ries and drives).

2. Utilities – provides methods to perform operations on the file system objects

File class and FileInfo class
The File class provides methods to manipulate files (create, copy, delete, move, rename, append and open)
and a mechanism for creating FileStream objects. The File class can also be used to manipulate file attri-
butes (such as DateTime information related to the creation, access and writing of a file).

Note: the methods of the File object always perform security checks when performing operations on all methods. By

default, full read/write access is granted to all users for new files.

The FileInfo class provides methods for copying, moving, renaming, creating, opening, deleting, and ap-
pending to files as well as the creation of FileStream objects.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Directory class and DirectoryInfo class
The Directory class provides methods for copying, renaming, creating, moving, deleting, and enumerating
through directories and subdirectories. The Directory class can also manipulate DateTime attributes (such
as information related to the creation, access and writing of a directory).

The DirectoryInfo class allows you to copy, rename, create, move, delete and enumerate through directories
and subdirectories, and access and manipulate a single directory on the file system.

DriveInfo class and DriveType enumeration
The DriveInfo class (new to the .NET Framework 2.0) provides programmatic access to information on a
drive such as the drive type, drive capacity, free space and availability

The DriveType enumeration (new to the .NET Framework 2.0) is used by the DriveInfo class to indicate the
drive type. This class defines the following constants for drive types: CDRom, Fixed, Network, NoRootDirec-
tory, Ram, Removable, and Unknown .

FileSystemInfo class and FileSystemWatcher class
The FileSystemInfo object can be a file or directory; it is the base class for the FileInfo and DirectoryInfo classes.

Note: When the FileSystemInfo object is first instantiated, the Refresh method is automatically called and cached
information on APIs attributes is returned. Thereafter, you must manually call the Refresh method to get updated

attribute information.

The FileSystemWatcher class provides methods for monitoring file system directories for modifications.
This class listens to the file system (on a local computer, network drive or remote computer) for change
notifications and will raise an event if a directory, subdirectory or file in a directory is modified.

You can use the Filter property to watch a specific file, or set it to an empty string (“”) or a wildcard (“*.*”) to
watch for changes in all files. Other considerations when using the FileSystemWatcher class are:

 n Hidden files are not ignored

 n Changes to files may be reported using the short 8.3 file name format on some systems

 n The FileSystemWatcher class contains a link demand and an inheritance demand at the class
level that applies to all members. A SecurityException will be thrown if the immediate caller or
the derived class does not have full-trust permission.

Path class
The Path class provides methods to manipulate String instances containing the file or directory path infor-
mation in a cross-platform manner.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

ErrorEventArgs class and ErrorEventHandler delegate
The ErrorEventArgs class contains the Exception that caused the error event. The GetException method is
called to retrieve the exception. The ErrorEventHandler delegate is the method that will handle the error
event of the FileSystemWatcher object. When the ErrorEventHandler delegate is created, the method you
want to handle the event is specified. This method is called whenever the error is found unless the del-
egate is removed.

RenamedEventArgs class and RenamedEventHandler delegate
The RenamedEventArgs class provides data for the Renamed event. This class extends the FileSystemEven-
tArgs class by adding an old name field and an old full path field to specify the previous name and full
path of the affected file or directory.

The RenamedEventHandler delegate represents the method that handles the Renamed event of a FileSystem-
Watcher class. When the RenamedEventHandler delegate is created, the method that you want to handle the
event is specified. This method is called whenever the error is found unless the delegate is removed.

5.5 Manage byte streams by using Stream classes.

FileStream class
The FileStream class provides the functionality to open file streams for reading, writing, opening and
closing. The FileStream class exposes the Stream of a file supporting synchronous and asynchronous read
and write operations. It can also manipulate file-related operating system handles such as pipes, standard
input and standard output. It buffers input and output for better performance.

Note: If the FileStream object does not have an exclusive hold on its handle, another thread could access the file
handle concurrently and change the position of the operating system's file pointer. If the system's handle position has

changed, the FileStream object will read the stream from the file again which could negatively affect performance.

Stream class
The Stream class represents a generic view of a sequence of bytes. Streams are a common type of refer-
ence type that provide the programmatic ability to read and write to the disk and communicate across a
network. The System .IO .Stream type is the base type for all subsequent stream type tasks. For example, the
StreamReader class enables developers to read from text files and the streamWriter class enables develop-
ers to write to text files. Streams involve three basic operations:

1. Reading from Streams

2. Writing to Streams

3. Seeking within a Streams (querying and modifying of the current position within a stream)

MemoryStream class
The MemoryStream class allows you to create Streams that use memory as a backing store to hold the
stream rather than the disk or network connection. When the MemoryStream object is created, the data is
encapsulated and stored as an unsigned byte array (which can be created as empty).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

BufferedStream class
The BufferedStream class provides a buffering layer to read and write operations to another Stream.

The buffer is a block of bytes stored in memory that cache data, thus reducing the number of calls to
the operating system and improving performance. Once the buffer is flushed, the data is written to the
underlying stream.

5.6 Manage the .NET Framework application
data by using Reader and Writer classes.

StringReader class and StringWriter class
The StringReader class implements a TextReader object that reads from a string.

The StringWriter class implements a TextWriter object for writing information to a string. The information is
stored in an underlying StringBuilder.

TextReader class and TextWriter class
The TextReader class provides a reader that can read a sequential series of characters. The TextReader class
is an abstract base class of StreamReader and StringReader classes used to open a text file for reading a
stream or specified range of characters.

The TextWriter class provides a reader that can write a sequential series of characters. The TextReader class
is an abstract base class of StreamWriter and StringWriter classes used to open a text file for writing a
stream or specified range of characters. A TextWriter object allows you to write an object to a string, write
strings to a file or serialize XML.

StreamReader class and StreamWriter class
The StreamReader class provides the ability to read characters from a stream as a string by implementing a
TextReader object (which reads characters from a byte stream in a particular encoding). This class can read
lines of characters from a standard text file.

The StreamWriter class allows characters to be written from a stream as a string by implementing a Text-
Writer object (which writes characters from a byte stream in a particular encoding).
Note: StreamReader and StreamWriter default to using an instance of UTF8Encoding unless
specified otherwise

BinaryReader class and BinaryWriter class
The BinaryReader class allows primitive data types to be read as binary values in a specific encoding.
The BinaryWriter class allows primitive data types to be written as binary values in a specific encoding.

Note: When the BinaryReader and BinaryWriter signatures specify a Stream as a parameter, they default to using an

instance of UTF8Encoding unless specified otherwise

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

5.7 Compress or decompress stream information in a .NET
Framework application (refer System.IO.Compression
namespace), and improve the security of application data
by using isolated storage.
The .NET Framework contains two methods for compressing data using standard compression algorithms:
GZIP and DEFLATE. Both compression algorithms have no patent protection and allow the compression or
decompression of data up to 4GB. The compression stream methods exposed to use compression/decom-
pression are GZIPStream and DeflateStream. Both methods use the same algorithm for compressing and
decompressing data. However, the GZIPStream class specification includes additional information about
the compression which may be required by other tools outside. Therefore, if building entirely self-con-
tained applications, you can use the DeflateStream class (which is slightly smaller) but if the data might be
shared outside the application, you should use the GZIPStream class.

The IsolatedStorage class gives applications a safe way to store information and files while not granting us-
ers access to specific files of folders on the file system. Isolated stores are scoped to a particular assembly:

 n Assembly/Machine – creates the store to keep information specific to the calling assembly and
the local machine (useful when creating application level data)

 n Assembly/User – creates the store to keep information specific to the calling assembly and the
current user (useful when creating user level data)

IsolatedStorageFile class
The IsolatedStorageFile class provides the base functionality to create files and folders in the isolated stor-
age environment without having to specify a particular path within the file system.

IsolatedStorageFileStream class
The IsolatedStorageFileStream class encapsulates the stream used to create files in the isolated storage
environment and exposed the file. This allows you to read, write and create files in isolated storage.

DeflateStream class
The DeflateStream class (new to the .NET Framework 2.0) allows data to be compressed through another
stream using the Deflate compression method. The Deflate algorithm is a standard algorithm for lossless
file compression and decompression. The Deflate format includes a cyclic redundancy check value for
detecting data corruption.

GZipStream class
The GZipStream class (new to the .NET Framework 2.0) allows data to be compressed through another
stream using the GZIP method. The GZIP format includes a cyclic redundancy check value for detecting
data corruption. The data can be be extended to use other compression formats

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Improving the security of the .NET Framework
applications by using the .NET Framework 2.0
security features

6.1 Implement code access
security to improve the security
of a .NET Framework application.

System.Security Namespace
The System .Security namespace provides the fundamental structure for the CLR security system and per-
missions management. Some of the more common classes contained within this namespaces are outlined
in this chapter.

SecurityManager class
The SecurityManager class provides the primary access mechanism for classes that interact with the secu-
rity system in the .NET Framework. You do not create new instances of the SecurityManager class. You use
this class to utilize methods to access and manipulate security policy configuration. This class’ methods let
you check execution rights, enable/disable security, manage caller permission and manage security.

CodeAccessPermission class
The CodeAccessPermission class provides the underlying structure for all code access permissions. It uses a
stack walk to verify permission of the callers of the code (represented as “growing down” where methods
higher in the call stack call methods lower in the call stack).

Code Access security policies can be modified at the computer, user and enterprise policy levels by using
the Code Access Security Policy tool (Caspol.exe). When running Capspol.exe from the command line,
enter “Caspol -?” for a complete set of options and instructions. Using the caspol tool, you can add code
groups, change code group permissions, list and modify code groups for a specified policy, manage ma-
chine level policies, manage enterprise-level and user-level policies, manage assemblies that implement
custom security, and disable/enable security checks.

PermissionSet class and NamedPermissionSet class
The PermissionSet class represents a collection of permissions. Using a PermissionSet object, you can man-
age several different permissions as a group (add, removed, deny, set and evaluate permissions). Permis-
sions in the CLR are objects that describe a set of operations that can be secured for specific resources.
Permissions are used by application code and the .NET Framework; code can request permission to run,
the security system policy can allow code to run, code can demand that calling code has permission, and
code can override the security stack using assert/deny/permit only functions.

Standard Security interfaces

 n IEvidenceFactory interface - returns a handle to an object’s Evidence object. The Evidence class
is a collection that holds sets of objects representing information that constitutes te input to
security policy decisions, such as code signatures, code origins and objects of any type. Specifi-
cally, this class holds two types of Evidence classes:

 n Host evidence - provides evidence regarding the origin of code, signatures, etc .

 n Assembly evidence - part of the assembly; allows developers and administrators to attach cus-
tom evidence to the assembly.

 n IPermission interface – defines the methods implemented by permission types. When writing a
new permission, programmers must implement the IPermission interface into the class.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

6.2 Implement access control by using
the System.Security. AccessControl classes.
The System .Security .AccessControl namespace (new to the .NET Framework 2.0) provides programming
elements that manage/audit access to security-related actions on securable objects. Some of the classes
provided by this namespace are described below.

DirectorySecurity class, FileSecurity class,
FileSystemSecurity class, and RegistrySecurity class
The DirectorySecurity class (new to the .NET Framework 2.0) represents access rights for a system directory
and how access attempts are audited. The access and audit rights are represented as a set of rules. Each
rule is represented by a FileSystemAccessRule object while each audit rule is represented by a FileSystemAu-
ditRule object.

The FileSecurity class (new to the .NET Framework 2.0) represents the access rights and audit security for
a specific file. As with the DirectorySecurity class, access and audit rights are represented as a set of rules
(access rules are represented by a FileSystemAccessRule object while each audit rule is represented by a
FileSystemAuditRule object).

The FileSystemSecurity class (new to the .NET Framework 2.0) represents the access rights and audit
security for a specific file or directory. The FileSystemSecurity class is the base class for the FileSecurity and
DirectorySecurity classes; represents all the access rights for a system file or directory, and defines how
access attempts are audited. As with the previous two classes, access and audit rights are represented as a
set of rules.

The RegistrySecurity class (new to.NET Framework 2.0) represents the access rights and audit security for a
registry key with access and audit rights represented as a set of rules.

AccessRule class (new to the .NET Framework 2.0 represents
The AccessRule represents a user's identity, an access mask, an access control type and indicates how rules
are inherited by child objects and how their inheritance is propagated.

AuthorizationRule class and AuthorizationRuleCollection class
The AuthorizationRule (new to the .NET Framework 2.0) allows you to manage access to securable objects.
Its derived classes of AccessRule and AuditRule offer specializations for access and audit functionality.
The AuthorizationRuleCollection (new to the .NET Framework 2.0) represents a collection of Authorization-
Rule objects.

CommonAce class, CommonAcl class, CompoundAce class, GeneralAce class, and GenericAcl class
The CommonAce class (new to the .NET Framework 2.0) is an access control entry.

The CommonAcl class (new to the .NET Framework 2.0) is an access control list (ACL). It is the base class for
the DiscretionaryAcl and SystemAcl class.

The CompoundAce class (new to the .NET Framework 2.0) represents a compound Access Control Entry (ACE).

The GenericAcl class (new to the .NET Framework 2.0) represents the access control list (ACL). It is the base
class for CommonAcl, DiscretionaryAcl, RawAcl and SystemAcl.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

AuditRule class
The AuditRule class (new to the .NET Framework 2.0) provides access to the user’s identity and an access
mask; contains information about how rules are inherited by child objects, how inheritance is propagated,
and for what conditions it is to be audited.

MutexSecurity class, ObjectSecurity class, and SemaphoreSecurity class (all new to the .NET
Framework 2.0)
The MutexSecurity class provides access rights to a named system mutex and specifies how access at-
tempts are audited. Access rights are expressed as rules (access rules are represented by a MutexAccessRule
and auditing rules by a MutexAuditRule object). The ObjectSecurity class provides control access to objects
without direct manipulation of Access Control Lists (ACLs) and is the abstract base class for the Com-
monObjectSecurity and DirectoryObjectSecurity classes. The SemaphoreSecurity class provides access rights
to a named system semaphore and specifies how access attempts are audited. Access rights are expressed
as rules (access rules are represented by a SemaphoreAccessRule and auditing rules are represented by a
SempahoreAuditRule object).

6.3 Implement a custom authentication scheme by using the
System.Security.Authentication classes.
The System .Security .Authentication namespace (new to the .NET Framework 2.0) provides a set of enu-
merations (CipherAlgorithmType, ExchangeAlgorithmType, HashAlgorithmType, and SslProtocolType) which
describe the security of an authenticated connection. These enumerations are:

 n CipherAlgorithmType - the possible cipher algorithms for the SslStream class

 n ExchangeAlgorithmType - the algorithm that creates keys shared by the client and server

 n HashAlgorithmType - the algorithm that generates message authentication codes (MACs)

 n SslProtocolType - the possible versions of SslProtocols

6.4 Encrypt, decrypt, and hash data by using the
System.Security.Cryptography classes.
The System .Security .Cryptography namespace includes cryptographic services: secure data encoding/de-
coding, hashing, random number generation, message authentication, and other methods. Detailing the
many classes, interfaces, structures and enumerations of the System .Security .Cryptography namespace
is outside the scope of this book, buta list of the common classes has been provided below. You should
review it before the exam:

 n DES class and DESCryptoServiceProvider class

 n HashAlgorithm class

 n DSA class and DSACryptoServiceProvider class

 n SHA1 class and SHA1CryptoServiceProvider class

 n TripleDES and TripleDESCryptoServiceProvider class

 n MD5 class and MD5CryptoServiceProvider class

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n RSA class and RSACryptoServiceProvider class

 n RandomNumberGenerator class

 n CryptoStream class

 n CryptoConfig class

 n RC2 class and RC2CryptoServiceProvider class

 n AssymetricAlgorithm class

 n ProtectedData class and ProtectedMemory class

 n RijndaelManaged class and RijndaelManagedTransform class

 n CspParameters class

 n CryptoAPITransform class

 n Hash-based Message Authentication Code (HMAC) classes (HMACMD5 class , HMACRIPEMD160
class , HMACSHA1 class , HMACSHA256 class , HMACSHA384 class , HMACSHA512 class)

6.5 Control permissions for resources by
using the System. Security.Permissions classes.
The System .Security .Permissions namespace provides access to classes that control access to operations
and resources based on policies. Detailing the many classes, interfaces, and enumerations of the System .
Security . Permissions namespace is outside the scope of this book, but the common classes are listed be-
low. You should review them before the exam:

 n SecurityPermission class - a set of security permissions applied to code

 n PrincipalPermission class - permits checks against the active principal using the language con-
structs defined for both declarative and imperative security actions

 n FileIOPermission class - manages the ability to access files and folders

 n StrongNameIdentityPermission class - outlines the identity permission for strong names

 n UIPermission class - manages the permissions related to user interfaces and the clipboard

 n UrlIdentityPermission class - outlines the identity permission for the URL from which the
code originates

 n PublisherIdentityPermission class - represents the identity of a software publisher

 n GacIdentityPermission class - manages the identity permission for files originating in the global
assembly cache. This class is new to the .NET Framework 2.0.

 n FileDialogPermission class - manages the ability to access files or folders through a file dialog

 n DataProtectionPermission class - manages the ability to access encrypted data and memory. This
class is new to the .NET Framework 2.0.

 n EnvironmentPermission class - manages access to system and user environment variables

 n IUnrestrictedPermission interface - allows a permission to expose an unrestricted state

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n RegistryPermission class - manages the ability to access registry variables

 n IsolatedStorageFilePermission class - indicates the allowed use of a private virtual file system

 n KeyContainerPermission class - manages the ability to access key containers. This class is new to
the .NET Framework 2.0.

 n ReflectionPermission class - manages access to metadata through the System .Reflection APIs

 n StorePermission class - outlines the identity permission for strong names. This class is new to the
.NET Framework 2.0.

 n SiteIdentityPermission class - outlines the identity permission for the Web site from which the
code originates

 n ZoneIdentityPermission class - outlines the identity permission for the zone from which the
code originates

Control code privileges by using System.Security.Policy classes.
The System.Security.Policy namespace contains code groups, membership conditions, and evidence
classes used to create rules applied by CLR security policy system.

ApplicationSecurityInfo class and ApplicationSecurityManager class
The ApplicationSecurityInfo class (new to.NET Framework 2.0) contains security evidence for an application
by providing security data regarding the manifest-activated application.

The ApplicationSecurityManager class (new to.NET Framework 2.0) manages trust decisions and provides
essential information for executing manifest activated applications.

ApplicationTrust class and ApplicationTrustCollection class
The ApplicationTrust class (new to.NET Framework 2.0) contains security decisions about an application.

The ApplicationTrust object is instantiated using the DetermineApplicationTrust method of the trust manager.

The ApplicationTrustCollection class (new to the .NET Framework 2.0) simply represents a collection of Ap-
plicationTrust objects.

Evidence class and PermissionRequestEvidence class
The Evidence class provides input to security policy decisions (signatures, location of origin of code, any
object of any type recognized by security policy as evidence). As previously described, the Evidence class is
a collection holding a set of objects (host evidence and assembly evidence).

The PermissionRequestEvidence class outlines evidence representing permission requests (minimum per-
missions the code needs to run, permissions code can use if granted, and permissions the code explicitly
asks not to be granted).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

CodeGroup class, FileCodeGroup class, FirstMatchCodeGroup
class, NetCodeGroup class, and UnionCodeGroup class
The CodeGroup class represents the abstract base class from which all implementations of code groups
(the building blocks of code access security policy) must derive. Each policy level contains a root code
group which can have child code groups. Each child code group can have its own child code groups. Each
of these child groups has subsequent code groups, and so on, to any number of levels, creating a code
group tree. Each code group has a membership condition that determines if an assembly belongs to it
based on its evidence.

Condition classes

1. AllMembershipCondition class - represents a membership condition that matches all code (typi-
cally used on the root code group of a policy level, therefore, the policy applies to all code).

2. ApplicationDirectory class - provides the application directory as evidence for policy evaluation.

3. ApplicationDirectoryMembershipCondition class – indicates if an assembly belongs to a code
group by testing its application directory.

4. GacInstalled class - confirms that a code assembly originates in the global assembly cache (GAC)
as evidence for policy evaluation. This class is new to the .NET Framework 2.0.

5. GacMembershipCondition class - indicates is an assembly belongs to a code group by testing
its global assembly cache membership. All assemblies installed in the global assembly cache are
granted the FullTrust permission set. This class is new to the .NET Framework 2.0.

6. Hash class - supplies evidence about the hash value for an assembly as a unique value that cor-
responds to a particular set of bytes. This eliminates all ambiguity since the hash value desig-
nates the assembly as a set of bytes rather than referring to an assembly by name, version, or
other designation. Also, hash values are a very cryptographically secure way to refer to specific
assemblies in policy without having to use digital signatures.

7. HashMembershipCondition class - indicates whether an assembly belongs to a code group by
testing the hash value.

8. Publisher class - Provides the Authenticode X.509v3 digital signature of a code assembly as
evidence for policy evaluation Determines whether an assembly belongs to a code group by
testing its software publisher's Authenticode X.509v3 certificate.

9. PublisherMembershipCondition class - indicates whether an assembly belongs to a code group
by testing its software publisher's Authenticode X.509v3 certificate.

10. Site class - supplies the Web site from which a code assembly originates as evidence for
policy evaluation.

11. SiteMembershipCondition class - indicates is an assembly belongs to a code group by testing
the site from which it originated.

12. StrongName class - supplies the strong name of a code assembly as evidence for policy evaluation.

13. StrongNameMembershipCondition class – indicates if an assembly belongs to a code group by
testing its strong name.

14. Url class –supplies the URL from which a code assembly originates as evidence for policy evaluation

15. UrlMembershipConditon class – indicates if an assembly belongs to a code group by testing its URL.

16. Zone class - supplies the security zone of a code assembly as evidence for policy evaluation.

17. ZoneMembershipCondition class – indicates if an assembly belongs to a code group by testing
its zone of origin.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

PolicyLevel class and PolicyStatement class
The PolicyLevel class represents the security policy levels for the common language runtime. The highest
level of security policy is enterprise-wide. Successive lower levels of hierarchy represent further policy
restrictions, but can never grant more permissions than allowed by higher levels.
The following policy levels are implemented:

1. Enterprise: security policy for all managed code in an enterprise.

2. Machine: security policy for all managed code run on the computer.

3. User: security policy for all managed code run by the user.

4. Application domain: security policy for all managed code in an application.

The PolicyStatement class represents the statement of a CodeGroup describing the permissions and other
information that apply to code with a particular set of evidence. A PolicyStatement consists of a set of
granted permissions, and possible special attributes for the code group.

IApplicationTrustManager interface and IMembershipCondition interface
The IApplicationTrustManager interface (new to the .NET Framework 2.0) determines whether an applica-
tion should be executed and, if so, which set of permissions should be granted to the application.

The IMembershipCondition interface represents the test to determine if a code assembly is a member of a
code group.

6.7 Access and modify identity information by using the
System.Security.Principal classes.
The System .Security .Principal namespace defines the principal object representing the security context
under which code is running. In other words, it contains information about the identity and roles(s) that
the current code (or user) is associated with and provides the ability to check the role membership of the
current user. Specifically, when handling requests requiring authorization, the .NET runtime will examine
the Principle attached to the current thread in order to determine the identity and roles of a user. The
System .Security .Principal namespace contains two classes, the GenericPrincipal and WindowsPrincipal class,
used to manage the properties of the System .Security .Principal object. The IPrincipal interface allows you to
define your own properties. The classes and interface are outlined below.

GenericIdentity class and GenericPrincipal class
The GenericIdentity class simply represents a generic user on whose behalf the code is executing.

The GenericPrinciple class represents the roles of the current user.

WindowsIdentity class and WindowsPrincipal class
The WindowsIdentity class simply represents the identity of the current user. You can instantiate a handle
on the WindowsIdentity object by calling the GetCurrent method of WindowsIdentity class.

The WindowsPrinciple class provides the ability to programmatically check the Windows group member-
ship of a Windows user.

NTAccount class and SecurityIdentifier class
The NTAccount class (new to the .NET Framework 2.0) represents a user or group account. The Value
property can be used to return an uppercase string representation of the NTAccount object. The ToString
method returns the account name in the familiar “Domain\Account” format.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The SecurityIdentifier class (new to the .NET Framework 2.0) represents a security identifier (SID) and pro-
vides marshaling and comparison operations for SIDs. The Value property returns the Security Descriptor
Definition Language (SDDL) string in uppercase for the security identifier (SID) represented by the Secu-
rityIdentifier object. Other methods can be used to determine if the security identifier is a valid Windows
account SID, is in the same domain as a specified SID, matched a well known SID type, etc.

IIdentity interface and IPrincipal interface
The IIdentity interface provides basic functionality of an identity object (the user on whose behalf the
code is running). The IIdentity interface is limited to three properties: AuthenticationType which gets the
type of authentication used, IsAuthenticated which gets a value that indicates whether the user has been
authenticated, and Name which returns the name of the current user.

The IPrincipal interface provides the basic functionality of a principal object, which has been described in
great detail throughout this chapter. The principal object represents the security context of the user on
whose behalf the code is running (the user's identity (IIdentity) and any roles to which the user belongs).
All principal objects are required to implement the IPrincipal interface. The IPrincipal interface has one
property, Identity which returns the identity of the current user and one method, IsInRole which indicates if
the current principal belongs to the specified role.

WindowsImpersonationContext class
The WindowsImpersonationContext class represents the Windows user prior to an impersonation opera-
tion by revert back a user's previous identity after the user impersonates another user. The Undo method
reverts the user context to the Windows user represented by the WindowsImpersonationContext object.

Note: Microsoft Windows 98 and Windows Millennium Edition platforms do not have users or user tokens. Therefore,

impersonation cannot take place on those platforms.

IdentityReference class and IdentityReferenceCollection class
The IdentityReference class (new to the .NET Framework 2.0) represents an identity. This is the base class
for the NTAccount and SecurityIdentifier classes. The Value property returns the string representation of the
identity represented by the IdentityReference object.

The IdentityReferenceCollection class (new to the .NET Framework 2.0) represents a collection of Identi-
tyReference objects. This class provides the ability to convert sets of IdentityReference derived objects to
IdentityReference derived types. One of the methods of this class, Translate, converts the objects in the
IdentityReferenceCollection collection to the specified type.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implementing interoperability, reflection,
and mailing functionality in a .NET
Framework application

7.1 Expose COM components to the .NET
Framework and the .NET Framework components to COM.

System.Runtime.InteropServices namespace
Interoperation refers to the process of interacting with unmanaged code from within managed code (the
.NET environment). The System .Runtime .InteropServices namespace provides a wide variety of members
that support COM interop and platform invoke services

Import a type library as an assembly.
You can add references to type libraries from within Visual Studio 2005 by selecting Project, Add Refer-
ence from the drop-down menu. The first two tabs will display options for .NET assemblies and COM
object references.

The Type Library Importer (Tlbimp.exe) tool used to import COM components from the Visual Studio 2005
command prompt. Using this tool creates a new .NET assembly that is available from the .NET tab when
using the “Add Reference” dialog box.

The format for this tool is:

tlbimp <dllname>.dll

or to change the name of the dll use:

tlbimp <dllname>.dll /out:<desiredname>.dll

Alternatively, you can also use Visual Studio 2005 or the System .Runtime .InteropServices namespace. Prior
to using this tool, the COM object (dll file) must first be registered, for example using Regsvr32 from the
command line.

TypeConverter class
The TypeConverter class provides a way of to convert types of values to other data types and provides
a way to access standard values and subproperties. The TypeConverter can be used for string-to-value
conversions or translation to or from supported data types at design time as well as run time. Most na-
tive types already have default type converters built into them to allow string-to-value conversions and
perform validation checks.

While it is outside the scope of this book, you should become familiar with performing the following tasks
using Visual Studio 2005:

 n Creating COM types in managed code

 n Compiling an interop project

 n Deploying an interop application

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Qualifying the .NET Framework types for interoperation

When building or deploying COM enabled assemblies, the following guidelines should be followed:

 n All classes must use a default constructor with no parameters

 n Any exposed type must be public

 n Any exposed member must be public

 n Abstract classes will be able to be consumed

 n Applying Interop attributes, such as the ComVisibleAttribute class

The ComVisibleAttribute class manages the accessibility of an individual managed type or member (or of
all types within an assembly) to COM. This attribute can be applied to assemblies, interfaces, classes, struc-
tures, delegates, enumerations, fields, properties, or methods.

 n Packaging an assembly for COM

 n Deploying an application for COM access

7.2 Call unmanaged DLL functions in a .NET Framework
application, and control the marshaling of data in a .NET
Framework application.

Platform Invoke
Platform Invoke (or P/Invoke) allows programmers to call an unmanaged Windows API. The platform
Invoke is managed from the System .Runtime .InteropServices namespace. To use the platform Invoke func-
tionality, you simply do the following:

1. Create a new static or shared external method

2. Decorate the new method with the DLLImport attribute and specify the library to call

3. Call the method from your code.

Create a class to hold DLL functions
Another option rather than using Platform Invoke is to create a class to contain the DLL functions you
wish to use. This method provides the following advantages: the code appears to developers using the
class as other .NET code contained within the application, developers are not required to remember API
specific references, it is more consistent and less error prone.

While outside the scope of this book, in preparation for the exam you should become familiar with how to
call a DLL function as well as call a DLL function in special cases, such as passing structures and imple-
menting callback functions.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The DllImportAttribute class
The DllImportAttribute class indicates that the attributed method is exposed by an unmanaged dynamic-
link library (DLL) as a static entry point. This attribute can only be applied to methods but provides infor-
mation needed to call a function exported from an unmanaged DLL.

Default marshaling behavior
Marshaling determines how data is passed in method arguments and return values between managed and
unmanaged memory during calls (performed by the CLR’s marshaling service as a run-time activity). The CLR
provides two mechanisms for interoperating with unmanaged code, platform Invoke and COM interop.

 n Marshal data with Platform Invoke - enables managed code to call functions exported from an
unmanaged library

 n Marshal data with COM Interop - enables managed code to interact with COM objects
through interfaces

Both types of marshaling move method arguments between caller and callee and back again (when re-
quired). With platform Invoke, invoke calls can flow only from managed to unmanaged code while method
calls can flow in either direction with COM Interop (of course, data can flow in both directions as In or Out
parameters with either method).

MarshalAsAttribute class and Marshal class
The Marshal class provides methods for allocating unmanaged memory, copying unmanaged memory
blocks, and converting managed to unmanaged types, as well as other miscellaneous methods used when
interacting with unmanaged code.

The MarshalAsAttribute class determines how to marshal the data between managed and unmanaged
code. This attribute can be applied to parameters, fields, or return values. The MarshalAsAttribute attribute
is optional and is only necessary when a given type can be marshaled to multiple types. Also, each data
type has a default marshaling behavior.

7.3 Implement reflection functionality in a .NET Framework
application (refer System.Reflection namespace), and create
metadata, Microsoft intermediate language (MSIL), and a PE
file by using the System.Reflection.Emit namespace.

SystemReflection namespace
The SystemReflection namespace contains types that retrieve information about assemblies, modules,
members, parameters, and other entities in managed code by examining their metadata. This namespace
provides the capability to interrogate types in the type system and generate code on the fly.

Note: Metadata is the information the CLR uses to load and execute code. It includes type information (information about

methods, properties, events, delegates, and enumerations) for all classes, delegates, and interfaces in the assembly.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Assembly class
The Assembly class defines an assembly. An assembly is defined as a “reusable, versionable, and self-de-
scribing building block of a common language runtime application”. The assembly essentially provides the
infrastructure to allow the runtime to fully understand the contents of an application. It also enforces any
versioning and dependency rules defined by the application.

Assembly attributes
Assembly attributes provide additional information about the assembly. You can retrieve assembly infor-
mation using the GetCustomAttributes method of the Assembly class. Some of the common attributes have
been defined below:

1. AssemblyAlgorithmIdAttribute class – specifies the hash algorithm to use when reading hash
files in the assembly manifest

2. AssemblyCompanyAttribute class – specifies the company that produced the assembly

3. AssemblyConfigurationAttribute class – specifies which configuration is used for the assembly
(for example, “Debug” or “Release”)

4. AssemblyCopyrightAttribute class - specifies copyright information for the assembly

5. AssemblyCultureAttribute class - specifies the culture setting for the assembly

6. AssemblyDefaultAliasAttribute class - specifies a simple name for the assembly

7. AssemblyDelaySignAttribute class - specifies that the assembly will be signed (or strongly
named) after it is compiled and marked as a strong assembly

8. AssemblyDescriptionAttribute class - specifies a description for the assembly

9. AssemblyFileVersionAttribute class - specifies the file version for the assembly

10. AssemblyFlagsAttribute class - specifies one or more AssemblyNameFlags for the assembly (e.g.
EnableJITcompile-Optimizer, EnableJITcompile-Tracking, PublicKey, Retargetable, or None)

11. AssemblyInformationalVersionAttribute class - specifies the version (for informational purposes
only) for the assembly

12. AssemblyKeyFileAttribute class - specifies the path of the key file used to sign the assembly

13. AssemblyTitleAttribute class - specifies the title for the assembly

14. AssemblyTrademarkAttribute class - specifies the trademark information for the assembly

15. AssemblyVersionAttribute class - specifies the version for the assembly

Info classes
1. ConstructorInfo class - indicates the attributes of a class constructor, provides access to construc-

tor metadata, and invoke the constructor

2. MethodInfo class – indicates the attributes of a method and provides access to method metadata

3. MemberInfo class - provides information about the attributes of a member and provides access
to member metadata. This class is the abstract base class for classes used to obtain information
about all members of a class (constructors, events, fields, methods, and properties).

4. PropertyInfo class - indicates the attributes of a property and provides access to property metadata

5. FieldInfo class – indicates the attributes of a field and provides access to field metadata

6. EventInfo class – indicates the attributes of an event and provides access to event metadata

7. LocalVariableInfo class – indicates the attributes of a local variable and provides access to local
variable metadata. The class is new to the .NET Framework 2.0.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Binder class and BindingFlags
The Binder class determines how to do type conversions and where to locate dynamic code. It selects a
member from a list of candidates and performs type conversion from actual argument type to formal
argument types.

The BindingFlags enumeration specifies flags that control binding. It also indicates the way in which the
search for members and types is conducted by reflection. This enumeration has a FlagsAttribute attribute
which allows a bitwise combination of its member values.

MethodBase class and MethodBody class
The MethodBase class provides information about methods and constructors. Also, the MethodBase class is
the base class of the MethodInfo and ConstructorInfo classes.

The MethodBody class (new to the .NET Framework 2.0) provides access to the metadata (local variables
and exception-handling clauses in a method body) and the Microsoft intermediate language (MSIL) for
the body of a method. To instantiate a handle on the MethodBody object for a given method, you must first
obtain a handle to the MethodInfo object, then call the GetMethodBody method.

Builder classes
When building code at runtime, it is encapsulated as other code would be (an assembly is created, mod-
ules within the assembly are created, and types within the modules are created). Builder classes define the
types of classes used to build dynamic assemblies, types, methods, etc.

1. AssemblyBuilder class – used to build assemblies at runtime

2. ConstructorBuilder class - used to build constructors at runtime

3. EnumBuilder class - used to build enumerations at runtime

4. EventBuilder class - used to build events at runtime

5. FieldBuilder class - used to build fields at runtime

6. LocalBuilder class - used to build local variables for methods and contructors

7. MethodBuilder class - used to build methods at runtime

8. ModuleBuilder class - used to build modules at runtime

9. ParameterBuilder class - used to build parameters at runtime

10. PropertyBuilder class - used to build properties at runtime

11. TypeBuilder class- used to build types at runtime

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

7.4 Send electronic mail to a Simple Mail Transfer Protocol
(SMTP) server for delivery from a .NET Framework application.

System.Net.Mail namespace
The System .Net .Mail namespace provides classes to create and transmit e-mail messages to an SMTP
server (Simple Mail Transfer Protocol). The namespace is new to the .NET Framework 2.0.

MailMessage class
The MailMessage class (new to the .NET Framework 2.0) represents an e-mail message (sent using the
SmtpClient class). You can specify sender, recipients, and contents of an e-mail message, attachments, etc.
using the properties of the MailMessage class shown below:

 n From – the sender of the e-mail

 n To – the recipient of the e-mail

 n CC – carbon copy recipients of the e-mail

 n BCC – blind carbon copy recipients of the e-mail

 n Attachments – one or more attachments for the e-mail

 n Subject – the subject of the e-mail

 n Body – the actual message body of the e-mail

MailAddress class and MailAddressCollection class
The MailAddress class (new to the .NET Framework 2.0) stores address information for an electronic mail
sender or recipient. The MailAddress class is used by both the SmtpClient and MailMessage classes. The mail
address is comprised of a User name, Host name and optionally, a DisplayName (which can contain non-
ASCII characters if encoded).

The MailAddressCollection class (new to the .NET Framework 2.0) stores e-mail addresses that are associ-
ated with an e-mail message. This class is used by the MailMessage .To, MailMessage .CC, and MailMessage .
Bcc properties.

SmtpClient class, SmtpPermission class, and SmtpPermission
Attribute class
The SMTPClient class (new to the .NET Framework 2.0) provides the ability for applications to send e-mail
using the Simple Mail Transfer Protocol (SMTP). When using the SMTPClient class to send an e-mail, the fol-
lowing information must be provided:

 n The SMTP host server

 n Credentials for authentication (if required by the SMTP server)

 n The e-mail address of the sender

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n The e-mail address (or addresses) of the recipients

 n The message content

The SmtpPermission class (new to the .NET Framework 2.0) manages access to Simple Mail Transport Proto-
col (SMTP) servers.

The SmtpPermissionAttribute class (new to the .NET Framework 2.0) controls access to Simple Mail Trans-
port Protocol (SMTP) servers.

Attachment class, AttachmentBase class, and AttachmentCollection class
The MailAddress class (new to the .NET Framework 2.0) represents an file attachment included in an e-mail.
When adding or more attachments to an e-mail, the file attachments are added to the MailMessage .At-
tachments collection and the content of the attachment can be a String, Stream, or file name.

The AttachmentBase class (new to the .NET Framework 2.0) is a base class that represents an email attach-
ment. The Attachment, Alternateview, and LinkedResource classes all derive from this class.

The AttachmentCollection class (new to the .NET Framework 2.0) contains one or more attachments to be
sent as part of an e-mail message.

SmtpException class and SmtpFailedReceipientException class
The SmtpException class (new to the .NET Framework 2.0) is the exception thrown when the SmtpClient
object is unable to complete a Send or SendAsync operation. You can use the SmtpException .StatusCode
class (new to the .NET Framework 2.0) returned by SMTP server when an e-mail message is transmitted to
determine the details of the error.

The SmtpFailedRecipientException class (new to the .NET Framework 2.0) is the exception thrown when the
SmtpClient is not able to complete the Send or SendAsync operation.

SendCompletedEventHandler delegate
The SendCompletedEventHandler delegate (new to the .NET Framework 2.0) handles events that occur
when the SmtpClient class finishes sending an e-mail message using the SendAsync method (asynchro-
nously) and the SendCompleted event is triggered.

LinkedResource class and LinkedResourceCollection class
The LinkedResource class (new to the .NET Framework 2.0) represents an embedded external resource in
an email attachment (e.g. an image in an HTML attachment).

The LinkedResourceCollection class (new to the .NET Framework 2.0) contains objects that store linked
resources sent as part of an e-mail message. Each instantiation of the LinkedResourceCollection class is
returned by the AlternateView .LinkedResources property

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

AlternateView class and AlternateViewCollection class
The AlternateView class (new to the .NET Framework 2.0) contains an object that represents the format to
view an email message. The AlternateView class is used to specify copies of the e-mail message in either an
HTML format or plain text format. This should always be used when sending e-mails to users whose e-mail
clients may not support HTML formatted e-mails.

The AlternateViewCollection class (new to the .NET Framework 2.0) represents a collection of Alternat-
eView objects. The AlternateView class is used to indicate an e-mail message in different formats (HTML
and plain text).

Implementing globalization, drawing, and text manipulation functionality in a .NET Framework application

8.1 Format data based on culture information.

System.Globalization namespace
The System .Globalization namespace represents the classes that define culture information allowing for
the development of applications for multiple, geographical disperse (international) regions. The System .
Globalization namespace provides capabilities to develop applications that specify settings for language,
country/region, calendars, format patterns for dates, currency, numbers, and sort orders for strings.

Access culture and region information in a .NET Framework application.
CultureInfo class
The CultureInfo class provides information about the culture, or locale, context in which the application is
running. Culture specific information, such as settings for language, sub-language, country/region, calen-
dars, format patterns for dates, currency, numbers, casing, and string comparisons are available.

Note: The String class uses this class in order to obtain information regarding the default culture

A unique name is specified for each culture. This unique name is a combination of an ISO 639 two-letter
lowercase culture code associated with a language and an ISO 3166 two-letter uppercase subculture code
associated with a country or region. For example, "en-US" represents U.S. English. A neutral culture is speci-
fied by only the two-digit lowercase language code. For example, "en" will specify the neutral culture for
English. For a complete list of the predefined culture names and identifies, refer to the Microsoft website:
http://msdn2.microsoft.com/en-us/library/system.globalization.cultureinfo.aspx.
This class is typically used to do the following:

 n Control how string comparisons are performed

 n Control how number comparisons and formats are performed

 n Control how date comparisons are performed

 n Control how resources are retrieved and used

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Cultures are typically grouped into three categories:

1. Invariant Culture – this is culture-insensitive and used as a default culture when consistency is de-
sired. An Invariant culture is indicated by using an empty string (“”) or the culture identifier “0x007F”.

2. Neutral Culture – associated with a language but has no relationship to countries or regions
(such as English – “en”, French – “fr”, and Spanish – “sp”).

3. Specific Culture – the most precise category in which a neutral culture and specific culture is
indicated (for example “en-US”). When developing applications, specific cultures should be indi-
cated whenever possible.

CultureTypes enumeration
The CultureTypes enumeration represents type of culture lists (defined by the CultureInfo .CultureTypes
property) that can be retrieved using the CultureInfo .GetCultures method. This enumeration is marked with
the FlagsAttribute so is allows the specification of multiple values.

The CultureInfo .CultureTypes class (new to the .NET Framework 2.0) return the culture types for the current
CultureInfo object.

RegionInfo class
The RegionInfo class contains detailed information about the country or region. The RegionInfo name is
one of the two-letter codes defined in ISO 3166 for country/region.

Format date and time values based on the culture.
DateTimeFormatInfo class
The DateTimeFormatInfo class indicates how DateTime values are formatted and displayed based on the
culture (such as date patterns, time patterns, and AM/PM designators). In order to create a DateTime-
FormatInfo object for a specific culture, create a CultureInfo object for the culture and then retrieve the
CultureInfo .DateTimeFormat property. For a detailed list of DateTime format specifiers and their associated
DateTimeFormatInfo properties, refer to the Microsoft web address: http://msdn2.microsoft.com/en-us/li-
brary/system.globalization.datetimeformatinfo.aspx.

Format number values based on the culture.
NumberFormatInfo class
The NumberFormatInfo class indicates how numeric values (currency, decimal separators, and other nu-
meric symbols) are formatted and displayed based on the culture settings.). In order to create a Number-
FormatInfo object for a specific culture, create a CultureInfo object for the culture and then retrieve the
CultureInfo .NumberFormat property. For a detailed list of NumberFormatInfo format characters for each
specified pattern and their associated NumberFormatInfo properties, refer to the Microsoft web address:
http://msdn2.microsoft.com/en-us/library/system.globalization.numberformatinfo.aspx.

NumberStyles enumeration
The NumberStyles enumeration indicates the styles permitted in numeric string arguments passed to the
Parse method of the numeric base type classes. For example, currency symbols, thousands separators,
decimal point indicators, and leading signs. This enumeration is marked with the FlagsAttribute so is allows
for bitwise combinations of member values. For a detail list of styles, refer to the Microsoft web address:
http://msdn2.microsoft.com/en-us/library/system.globalization.numberstyles.aspx.

http://www.preplogic.com/products/video/view-video-training.aspx
http://msdn2.microsoft.com/en-us/library/system.globalization.numberstyles.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Perform culture-sensitive string comparison.
CompareInfo class
The CompareInfo class implements a set of methods for culturally sensitive string comparisons. A new in-
stance of the CompareInfo class can be created or use the CompareInfo property of the CultureInfo class to
get a handle on the CompareInfo object. The GetCompareInfo method allows for late-bound access (rather
than using a public contstructor).

Note: The String .Compare uses the information in CultureInfo .CompareInfo to compare strings

CompareOptions enumeration
The CompareOptions enumeration controls how comparisons are performed on the CompareInfo class. For
example, case sensitivity or whether types of characters should be ignored. This enumeration is marked
with the FlagsAttribute so is allows for bitwise combinations of member values.

Build a custom culture class based on existing culture and region classes.
CultureAndRegionInfoBuilder class
The CultureAndRegionInfoBuilder class (new to the .NET Framework 2.0) allows programmers to create
and use customized cultures. Developers can define a custom culture that is new or overrides an existing
culture (based on an existing culture and region). This custom culture can then be installed on a system
and subsequently used by any application running on that system (as long as the user has administrative
rights to that computer).

CultureAndRegionModifier enumeration
The CultureAndRegionModifier enumeration (new to the .NET Framework 2.0) indicate the constants that
define the CultureAndRegionInfoBuilder object. The members made available by this enumeration are:

 n Neutral – a neutral custom culture

 n None - a specific, supplemental custom culture

 n Replacement – a custom culture that replaces an existing .NET Framework culture or
Windows Locale

This enumeration is marked with the FlagsAttribute so is allows for bitwise combinations of member values.

8.2 Enhance the user interface of a .NET Framework application
by using the System.Drawing namespace.
The System .Drawing namespace provides programmatic access to CDI+ basic graphics functionality so
that you can draw to the display device, which allows you to create new images or modify existing images.
More advanced capabilities are available in the following derived namespaces:

 n System.Drawing.Drawing2D

 n System.Drawing.Imaging

 n System.Drawing.Text

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Some function made available by the System .Drawing namespace are:

 n Add circles, lines, and other shapes dynamically

 n Create charts

 n Edit and resize pictures

 n Change compression ratios of pictures saved to disk

 n Crop or zoom images

 n Add copyright logos to text or pictures

While there are over a dozen classes made available by the System .Drawing, namespace, some of the more
important and common classes are discussed below.

Enhance the user interface of a .NET Framework
application by using brushes, pens, colors, and fonts.
Brush class
The Brush class defines objects to fill the interior of graphical shapes (rectangles, ellipsis, pies, polygons,
and paths). Because this is an abstract class, Brush objects cannot be instantiated and must be derived
(from SolidBrush, TextureBrush, and LinearGradientBrush).

Brushes class
The Brushes class provides the brushes for all standard colors. It is a static class that provides read-only
properties returning a Brush object of the color represented by the property name.

SystemBrushes class
The SystemBrushes class represents a SolidBrush where each property is a color of a Windows display ele-
ment. This class cannot be inherited.

TextureBrush class
The TextureBrush class represents a Brush object that uses an image to fill the interior of a shape.

Pen class
The Pen class defines an object used to draw lines, curves, and arrows with a specified width and style. The
line of the Pen object can be filled with solid colors, textures, and fill styles (depending on the brush or
textures used to fill the object). You can also use the DashStyle to draw different types of dashed lined. This
class cannot be inherited.

Pens class
The Pen class provides access to Pen objects for all of the standard colors. The Pen objects are immutable
(so their properties cannot modified). This class cannot be inherited.

SystemPens class
The SystemPens class provides access to the Pen class where each property of the System .Pens object is the
color of the Windows display element having the width of 1 pixel.

SolidBrush class
The SolidBrush class represents a Brush of a single color used to fill graphic shapes (such as rectangles, el-
lipses, pies, polygons, etc.). This class cannot be inherited.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Color structure
The Color structure represents a color and is used to specify a control’s color. You can specify the color of a
control by using the predefined properties available by the System .Drawing .Color class or you can specify a
custom color using the Color .Argb method.

ColorConverter class
The ColorConverter class converts colors from one data type to another. This class expects an unqualified
color name (for example, “black”) rather than a qualified name (for example, “System.Drawing.Color.Black”)
or an exception is thrown during the conversion call. This class is access through the TypeDescriptor class.

ColorTranslator class
The ColorTranslater class is used to translate colors from one GDI+ color structure to another GDI+ color
structure. This class cannot be inherited.

SystemColors class
The SystemColors class provides access to the Color structure where each property of the SystemColors
class is the color of the Windows display element.

StringFormat class
The StringFormat class provides access to the text layout information (alignment, orientation, tab stops,
etc) and display features (ellipses insertions and national digits substitution) and OpenType features. This
class cannot be inherited.

Font class
The Font class defines a specific font format for text such as font face, font size, and style attributes. This
class cannot be inherited.

Note: Windows form display true type fonts and only support OpenType fonts on a limited basis. If you attempt to use a

font that is not supported (or installed on the local machine), the system will default to the Microsoft Sans Serif font.

FontConverter class
The FontConverter class converts Font objects from one type to another. This class is accessed via the Type-
Descriptor object.

FontFamily class
The FontFamily class defines a group of typefaces having similar font designs as well as font typefaces that
have certain variations in styles. This class cannot be inherited.

SystemFonts class
The SystemFonts (new to the .NET Framework 2.0) specified the fonts used to display text within Windows
display elements. Each property of the SystemFonts class returns a Font object which displays text in a par-
ticular Windows display element. The font settings indicated are also represented in the settings located in
the systems Control Panel.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Enhance the user interface of a .NET Framework application by using
graphics, images, bitmaps, and icons.
Graphics class
The Graphics class provides methods for drawing to the display device by encapsulating the GDI+ drawing
surface. This class cannot be inherited. A handle to eh Graphics object can be obtained by:

1. Calling the Control .CreateGraphics method on an object that inherits from System .Windows .
Forms .Control

2. A control's Control .Paint event

3. Accessing the Graphics property of the System .Windows .Forms .PaintEventArgs class

BufferedGraphics class
The BufferredGraphics class (new to the .NET Framework 2.0) provides a graphics buffer for double buffer-
ing. This provides the programmer a wrapper for a graphics buffer, methods to write to the graphics buffer,
and render the contents of the buffer to an output device.

Note: Graphical double buffering helps to reduce (or eliminate) image flickering caused when redrawing a display
surface. Updated images are first drawn to the buffer in memory and its contents are quickly written to the displayed

surface. This additional overwriting of the images helps to reduce the visual flickering noticed by the application users.

The The BufferredGraphics object is created using the BufferredGraphicsContext for the application using
the Allocate method.

BufferedGraphicsManager class
The BufferedGraphicsManager class (new to the .NET Framework 2.0) provides access to the main buffered
graphics context object in the application domain. The BufferredGraphics class provides a graphics buffer
for double buffering to help to reduce (or eliminate) image flickering. The Current property of the Buff-
eredGraphicsManager class returns the main BufferredGraphicsContext object for the current application
domain which can be used to create BufferredGraphics objects to draw buffered graphics.

Image class
The Image class is an abstract base class that provides functionality for the Bitmap and Metafile descen-
dent classes. Using this class, you can create, load, modify, and save images of various image types (bit-
maps, jpegs, tiff files, etc.). You can perform sophisticated image functions such as drawing objects, images,
and charts and then saving them as image files. This class can also be used to write copyright information
or watermarks to pictures and resize images to consume less space.

New instances of the Image class can be created using the Image .FromFile and Image .FromStream methods
or by inheriting the image from the System .Drawing .Bitmap or System .Drawing .Imaging .Metafile classes.

ImageConverter class
The ImageConverter class converts an Image object from one data type to another. This class is accessed
using the TypeDescriptor object.

ImageAnimator class
The ImageAnimator class animates an image that has time-based frames.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Bitmap class
The Bitmap class is used when working with new or existing images (bitmaps represented by pixel data
and attributes). This class encapsulates GDI+ bitmaps (pixel data for graphics images and their attributes).
A new Bitmap object can be created from an existing image, existing file, stream object, or as a blank
bitmap of a specified height and width.

Icon class
The Icon class represents a Windows icon (whose size is determined by the system).

IconConverter class
The IconConverter class converts an icon from one data type to another. This class is accessed using the
TypeDescriptor object.

SystemIcons class
The SystemIcon class represents the Icon object whose properties are Windows system-wide icons. This
class cannot be inherited. The .NET Framwork provides 40 pixel by 40 pixel system icons as properties of
the SystemIcon class.

Enhance the user interface of a .NET Framework application by using
shapes and sizes.
Point Structure
The Point structure represents an ordered pair of x and y coordinates which, together, define a point on a
two dimensional plane.

PointConverter class
The PointConverter class provides the ability to convert a Point object from one data type to another. This
class is accessed using the TypeDescriptor object.

Rectangle Structure
The Rectangle structure indicates a set of four integers that represent the location and size of a rectangle
(which is defined by its height, width, and location as the upper-left corner).

RectangleConverter class
The RectangleConverter class converts rectangles from one data type to another. This class is accessed us-
ing the TypeDescriptor object.

Size Structure
The Size structure stores an ordered pair of integers that can be used to represent the width and height of
a rectangle.

SizeConverter class
The SizeConverter class is used to convert from one data type to another. This class is accessed using the
TypeDescriptor object.

Region class
The Region class represents the interior of a graphics object which is composed of rectangles and paths.
This class cannot be inherited.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

8.3 Enhance the text handling capabilities of a .NET Framework
application (refer System.Text namespace), and search, modify,
and control text in a .NET Framework application by using
regular expressions.

System.Text.RegularExpressions
A regular expression is a set of characters that can be compared to another string in order to determine
if the string meets specific format requirements or regular expressions can be used to extract/replace
portions of text within a string. Regular expressions can be matched against strings consisting of inte-
gers, strings containing lowercase letters, or string matching hexadecimal output. Blocks of text can be
extracted from strings or updated to modify the format of text or remove specified characters. The System .
Text .RegularExpressions namespace contains classes which provide access to the .NET Framework regular
expression engine. Some of these classes are described in this chapter.

StringBuilder class
The StringBuilder class represents a string object whose value is a mutable sequence of characters. Most
of the methods of this class that modify the value of the object, return a reference to the same instance of
the class (as opposed to creating a new instance of the class). This class cannot be inherited.

Note: A mutable class is a class where the value can be modified once it has been created by appending, removing,

replacing, or inserting characters.

The StringBuilder class is unlike the String object which is immutable and, therefore, creates a new string
object in memory whenever a method of the String object is called. You can think of immutable objects as
read-only objects while mutable objects can be updated.

The default capacity (maximum number of characters the instance can store at any given time) of the
StringBuilder object is 16. However, the StringBuilder class can allocate more memory as needed. The
largest value for capacity is represented by Int32 (or 2,147,483,647). In addition, the Capacity and Length
properties can be set (or read) programmatically.

The contents of the StringBuilder class can be modified using the following methods:

 n Append - add text or a string representation of an object to the end of a string represented by
the current StringBuilder

 n AppendFormat - adds text to the end of the StringBuilder implementing the IFormattable interface

 n Insert - adds a string or object to a specified position in the current StringBuilder

 n Remove - remove a specified number of characters from the current StringBuilder, beginning at a
specified zero-based index

 n Replace – replace characters within the StringBuilder object with another specified character

Regex class
The RegEx class represents an immutable regular expression. However, the RegEx class does have several
static methods which allow you to use a regular expression without explicitly creating a new Regex object
(a result of being an immutable, read-only object).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Match class and MatchCollection class
The Match class represents the results from a single regular expression match (which is immutable). A
single Match can involve multiple matching groups. When this occurs, the Groups property returns a
GroupCollection (described below).

The MatchCollection class represents a set of successful matches (which are immutable). These matches
are found by iteratively applying a regular expression pattern to a input string.

Group class and GroupCollection class
The Group class represents the results from a single capturing group (zero, one, or more strings in a single
match) and supplies a collection of Capture objects. The Group class inherits from the Capture class and the
last substring captured can be accessed directly.

The GroupCollection class represents a collection of Groups by returning the set of captured Groups in a
single match. Instanced are immutable and are only returned in the collection of Groups objects.

Encode text by using Encoding classes
The .NET Framework provides the ability for programmers to manually encode and decode characters. En-
coding is defined as the process of transforming a set of Unicode characters into a sequence of bytes and
decoding is the process of transforming a sequence of encoded bytes into a set of Unicode characters.

Encoding class
The Encoding class uses the Unicode standard to assign a number to each character. The Unicode Standard
Version 2.3 uses the following UTFs (Unicode Transformation Format which is used for encoding):

 n Unicode UTF-8 encoding - encodes Unicode characters using the UTF-8 encoding (represents
each code point as a sequence of one to four bytes). This encoding supports all Unicode
character values.

 n Unicode UTF-16 encoding - encodes Unicode characters using the UTF-16 encoding (represents
each code point as a sequence of one to two 16-bit integers).

 n Unicode UTF-32 encoding - encodes Unicode characters using the UTF-32 encoding (represents
each code point as a 32-bit integer).

 n ASCIIEncoding - encodes Unicode characters as single 7-bit ASCII characters.

 n UTF7Encoding - encodes Unicode characters using the UTF-7 encoding.

Note: If you need to encode/decode non Unicode characters (such as binary data), use an alternate protocol such

as uuencode.

EncodingInfo class
The EncodingInfo class (new to the .NET Framework 2.0) provides basic information about encoding. Used
by the Encoding class, the EncodingInfo class provides minimal information about the encoding such as
the code page identifier for the encoding , the display name, and the name registered with the Internet
Assigned Numbers Authority (IANA) for the encoding. More detailed encoding information can be ac-
cessed using the GetEncoding method of Encoding class.

ASCIIEncoding class
The ASCIIEncoding class represents the ASCII character encoding of Unicode characters. ASCIIEncoding
only supports Unicode character values between U+0000 and U+007F and should therefore not be used
for global applications.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET 2.0 Application Development (70-536) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

UnicodeEncoding class
The UnicodeEncoding class represents UTF-16 encoding of Unicode characters where each code point as a
sequence of one to two 16-bit integers.

UTF8Encoding class
The UTF8Encoding class represents UTF-8 encoding of Unicode characters where each code point as a
sequence of one to four bytes.

Encoding Fallback classes
The EncoderFallback class (new to the .NET Framework 2.0) implements a failure handling framework for
an input character that cannot be converted to an encoded output byte sequence. IN essence, it provides
a “fallback” mechanism. You can use predefined .NET Framework encoder fallbacks or, alternatively, create
custom encoder fallbacks (derived from the EncoderFallback and EncoderFallbackBuffer classes).
There are two difference fallback strategies available.

1. Use the EncoderReplacementFallback class which substitutes a string you provide for any input
character that cannot be converted; the string is encoded instead of the invalid character

2. Use the EncoderExceptionFallback class which will throw an EncoderFallbackException when an
invalid character is encountered

Decode text by using Decoding classes.
Decoder class
The Decoder class converts a sequence of encoded bytes into a set of characters.

Decoder Fallback class
The DecoderFallback class (new to the .NET Framework 2.0) implements a failure handling framework for
an encoded input byte sequence that cannot be converted to an output character. You can use predefined
.NET Framework decoder fallbacks or, alternatively, create custom decoder fallbacks (derived from the
DecoderFallback and DecoderFallbackBuffer classes).

Capture class and CaptureCollection class
The Capture class contains the results as a single substring from a successful, sub expression capture. The
instances are returned through a collection, accessible via the Captures class. This class is immutable.
The CaptureCollection class returns a set of Capture substrings collected by one capturing group. The
instances are returned through the Captures collection. This class is immutable.

http://www.preplogic.com/products/video/view-video-training.aspx

