

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Microsoft .Net Framework 2.0
Distributed Application Development
(70-529) LearnSmart Exam Manual

Copyright © 2011 by PrepLogic, LLC
Product ID: 11094
Production Date: July 22, 2011

All rights reserved. No part of this document shall be stored in a retrieval system or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the information contained herein.

Warning and Disclaimer
Every effort has been made to make this document as complete and as accurate as possible, but no war-
ranty or fitness is implied. The publisher and authors assume no responsibility for errors or omissions. The
information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this document.

LearnSmart Cloud Classroom, LearnSmart Video Training, Printables, Lecture Series, Quiz Me Series,
Awdeeo, PrepLogic and other PrepLogic logos are trademarks or registered trademarks of PrepLogic, LLC.
All other trademarks not owned by PrepLogic that appear in the software or on the Web Site (s) are the
property of their respective owners.

Volume, Corporate, and Educational Sales
PrepLogic offers favorable discounts on all products when ordered in quantity. For more information,
please contact PrepLogic directly:

1-800-418-6789
solutions@learnsmartsystems.com

International Contact Information
International: +1 (813) 769-0920

United Kingdom: (0) 20 8816 8036

http://www.preplogic.com/products/video/view-video-training.aspx
mailto: solutions@preplogic.com

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Table of Contents

Create and Configure an XML Web Service. 4

Create a Web Service . 4

The @WebService Directive . 5

Creating the Web Service Class . 5

Browsing the Web Service . 6

Changing the Namespace . 6

Using the Web Service . 7

Create Web Methods . 8

Create a OneWay Web Method . 8

Use Discovery Files to Publish a List of

WebServices that are Installed on a Web Server . 9

Dynamically Discovering Web Services . 10

Configuring and Customizing a WebService Application. 10

Configure SOAP Messages . 10

Specify the Basic Information for a Web Service Application . 10

Configure the Formatting of SOAP Messages for a Web Service Method 11

Configuring the Parameter Formatting and Style for the Web Service . 11

Configuring the Formatting for Methods of the Web Service . 11

Specify the Bindings of a Web Service Application by Using the

WebServiceBinding Attribute . 12

Configure a Web Service Application by Using a Configuration File . 12

Manage Session State in Web Services. 13

Implement Session State by using the Application Object . 13

Implement Session State by using the Session Object . 13

Implement Session State by using Cookies . 13

Implement SOAP Headers . 14

Add a Custom SOAP Header Class . 15

Create a Public Instance of the Custom SOAP Header Class in a Web Service Class 15

Apply a SoapHeader Attribute to a Web Method . 15

Add SOAP Headers to Web Service Calls . 16

Access and Process a SOAP Header in a Web Method . 16

Set the Direction of a SOAP Header . 17

Handle Unknown SOAP Headers . 18

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement SOAP Extensions . 18

Create a Custom SOAP Extension . 19

Configure a SOAP Extension . 21

Creating, Configuring, and DeployingRemoting Applications . 22

Create and Configure a Server Application . 23

Create a Server Application Domain . 23

Configure a Server Application Programmatically . 23

Configuring Channels . 23

Configuring Remote Objects . 23

Versioning . 24

Changing the Channel Formatting . 24

Configure a Server Application using Configuration Files . 25

Configuring Channels . 25

Configuring Remote Objects . 25

Versioning . 26

Change the Channel Formatting . 26

Create a Client Application to Access a Remote Object . 26

Create a Remote Object . 26

Configure a Client Application Programmatically . 27

Configuring Channels . 27

Configuring Remote Objects . 27

Configure a Client Application using Configuration Files . 27

Configuring Channels . 28

Configuring Remote Objects . 28

Access the Remoting Service by Calling a Remote Method . 29

Debug and Deploy a Remoting Application . 29

Use Performance Counters to Monitor a Remoting Application . 29

Debug a Remoting Application . 30

Handling Exceptions . 30

Tracking Remoting . 30

Deploy a Remoting Application . 30

Deploying a Hosting Application . 30

Deploy a Client Application . 30

Manage the Lifetime of Remote Objects . 31

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Initialize the Lifetime of a Remote Object . 31

Renew the Lifetime of a Remote Object . 32

Implementing Asynchronous Calls andRemoting Events . 33

Call Web Methods Asynchronously . 33

Call a Web Method . 33

Poll for the Completion of a Web Method . 35

Implement Callback . 36

Call a One-Way Web Method . 36

Call Remoting Methods Asynchronously . 36

Implement One-Way Methods by Using the OneWay Attribute . 37

Call a Remote Method Asynchronously . 37

Implement Callback . 39

Implement Events in Remoting Applications . 40

Create and Fire Events . 42

Passing the Event from the Remote Object to the Client . 43

Implement Event Handlers for the Events of Remote Objects . 44

Implementing Web Service Enhancements (WSE) 3.0 . 45

Enable WSE in Client and Server Applications . 45

Add References to the WSE Assemblies . 46

WSE 3 .0 Configuration under Visual Studio 2005 . 46

Manual WSE 3 .0 Configuration . 47

Edit the Web Service Proxy Class to Derive From the WebServiceClientProtocol Class 47

Add a <configSections> Element to add the <microsoft .web .services3> Section to

a Configuration File . 48

Add a <soapExtensionTypes> Element under the <webService> Element in

a Configuration File . 48

Accessing the WSE 3.0 Facilities . 49

The WSE 3 .0 Message Pipeline . 49

Implement a Policy for a Web Service Application . 50

Create a Policy File Manually . 51

Create a Policy File Using the WseConfigEditor3 Tool . 51

Configure a Policy File in a Configuration File . 52

Applying a Policy to a Web Service . 53

Declaratively Apply a Policy to a Web Service . 53

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Programmatically Apply a Policy to a Web Service . 53

Add a Policy to a Client Application . 54

Declaratively Apply a Policy to a Client Application . 54

Programmatically Apply a Policy to a Client Application . 54

Security Tokens . 55

The Turnkey Security Assertions . 56

Create a Custom Policy Assertion . 56

Custom Non-Security Policy Assertions . 57

Custom Security Policy Assertions . 57

Using the Custom Policy Assertion . 58

Implement WSE SOAP Messaging . 58

To TCP or HTTP? . 58

Implement One-way SOAP Messaging . 58

Send Messages . 58

Create a Class to Receive Messages . 59

Receiving the Message across HTTP . 60

Receiving the Message across TCP . 60

Implement Bi-directional SOAP Messaging . 60

Create a Class to Send Messages . 61

Create a Class to Receive Messages . 61

Configuring the Sender and Receiver . 62

Adding Attachments to Method Calls . 62

Handling Attachments . 63

Sending Attachments . 63

Receiving Attachments . 63

Route SOAP Messages Using a WSE Router . 64

Create a WSE Router Application . 64

Configure a Referral Cache for Routing . 65

The Referral Cache File . 66

Applying a Policy to Incoming Requests . 67

Creating and Access a Serviced Component and Using Message Queuing 68

Create, Configure and Access a Serviced Component . 68

Create a Serviced Component . 68

Add Attributes to a Serviced Component . 69

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Transactions . 69

Object Pooling . 70

Queued Components . 70

Register a Serviced Component . 70

Microsoft Management Console . 70

Services Installation Tool . 71

Implement Security . 71

Using a Serviced Component . 72

Create, Delete and Set Permissions on a Message Queue . 72

Create a Message Queue Manually . 72

Create a Message Queue Programmatically . 73

Delete a Message Queue . 73

Set Permissions for a Message Queue . 74

Sending and Receiving Messages to a Message Queue and Delete Messages

from a Message Queue . 74

Create a Message . 74

Send a Message . 75

Receive a Message . 75

Decide Which Formatter to Use . 76

Delete Queued Messages . 77

Handle Acknowledgements . 78

Peek at Messages . 79

Receive a Message Asynchronously . 80

Use BeginReceive/EndReceive and ReceiveCompleted . 80

Message Security . 81

Signing a Message . 81

Verify a Message . 84

Encrypt a Message . 84

Decrypt a Message . 85

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create and Configure an XML Web Service
Web services are a cross platform means of exposing data and functionality to applications in a distrib-
uted environment. Web services operate over the internet using the SOAP protocol, which is based on
the XML format.

Web services, under .NET, can be thought of as a normal assembly that you can interact with. The .NET
runtime shields the developer from the complexities of making calls “across the wire” and appear as
though they’re just a standard method call.

Create a Web Service
Visual Studio 2005 provides a project template, ASP.NET Web Service, which you can use to create an initial
project; however, any ASP.NET Web project can be used to hold a Web Service.

If you select the Add New Item option for the Web project you’ll see, as shown in Figure 1, that you can
add a Web Service to the project.

 Figure 1 – Adding a Web Service

If you select the “Place code in separate file” option, referred to as the code-beside model, from the Add
New Item dialog, you’ll have created two files: an ASMX file, which is the public facing for the Web Service
and is equivalent to the ASPX file for Web pages, and a CS file that is added to the App_Code folder. This
is shown in Figure 2.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Figure 2 – The files created for a Web Service

If you’ve chosen not to place the code in a separate file, referred to as the code-inline model, you’ll only
have one file created; the ASMX file will contain everything necessary to run the Web Service.

The @WebService Directive
The first line in any ASMX file is a declaration that the file is actually as Web Service. As with the @Page
directive for ASPX pages, there is a corresponding directive for Web services — @WebService.
Depending on whether you’ve selected the code-beside or code-inline models, you’ll have a slightly differ-
ent syntax for the @WebService directive.

For a code-beside Web service, we specify the name of the class, the Class attribute, and the file that
contains the class (the CodeBehind attribute), as follows:

<%@ WebService Language=”C#” CodeBehind=”~/App_Code/WebService.cs”

Class=”WebService” %>

For a code-inline Web service, we simply specify the name of the class using the Class attribute:

<%@ WebService Language=”C#” Class=”WebService” %>

Creating the Web Service Class
In order for your Web service to be compiled correctly as a Web service, there are a couple of other things
that must be done:

1. The class must inherit from System.Web.Services.WebService.

2. The class must have the WebService attribute applied.

This is shown in the example below:

[WebService]

public class WebService : System.Web.Services.WebService
{
 // code for the class
}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Browsing the Web Service
Web services in ASP.NET can be added quite easily to your application. ASP.NET also provides a handy
method of checking that your Web service is available and previewing the exposed methods. If you navi-
gate to your Web service in a browser, as shown in Figure 3, you’ll get a handy view of your Web service
and the methods that are exposed.

 Figure 3 – Browsing a Web service

You’ll see that we have a single exposed method called HelloWorld. This is added automatically to all Web
services that are created in Visual Studio and the first thing that you’ll normally do is delete the code for it.

Changing the Namespace
If you look again at Figure 3, you’ll see that there is a recommendation to change the namespace for the
Web service. All Web services created in Visual Studio are placed in this namespace. It can be changed
quite easily by specifying the Namespace property of the WebService attribute:

[WebService(Namespace=”http://preplogic.com”)]

public class WebService : System.Web.Services.WebService

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using the Web Service
In order to use Web services in code, you need to add a reference to it to your code. In Visual Studio there
is an “Add Web Reference” attribute available for the project. Selecting this allows you to browse, as shown
in Figure 4, to the required Web Service.

 Figure 4 – Adding a reference to a Web service

The namespace box is the key; this determines the root namespace that is available within your code. In
order to use the referenced Web service in code, you need to create an instance of the Web service proxy.
If you leave it as localhost, as shown in Figure 4, you need to create this object as follows:

localhost.WebService myService = new localhost.WebService();

All of the exposed methods of the Web service can then be called directly on the Web service proxy. In
this case we only have a HelloWorld method that returns a string, and we can call this as follows:

string myString = myService.HelloWorld();

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create Web Methods
We’ve already seen an example of a Web Method in the HelloWorld method that is added automati-
cally to each Web service created in Visual Studio. There are only two requirements to create an
exposed Web Method:

1. Create a public method in the Web service.

2. Add the WebMethod attribute to the method.

One of the simplest methods we can create is the aforementioned HelloWorld method:

[WebMethod]

public string HelloWorld()

{

 return “Hello World”;

}

There are several properties that we can set within the WebMethod attribute. The two that you’ll prob-
ably use most often are:

 n Description – this allows you to add a description for the method. It is not available in code
at the client but can provide a handy reference that is visible when viewing the Web service,
such as the views we saw in Figure 3 and Figure 4.

 n MessasgeName – by default, the name of the method is used as the name of the method
in the proxy class. You can use the MessageName property to override this behavior. This is
particularly handy when you have overloaded methods, as these are not supported by the SOAP
protocol, and one of the overloaded methods will need to be given a different MessageName.

Create a OneWay Web Method
By default, when you make a call to a Web Method in your client application, the call blocks until a response
is received. For the HelloWorld example we’ve seen, this is correct, as we need to return a string; how-
ever, for methods that don’t return any values, we don’t really need to wait for the method to return.

In order to mark a Web Method as one way, you need to use the OneWay property of either the Soap-
DocumentMethod or SoapRpcMethod attributes in the System.Web.Services.Protocols
namespace. These two attributes change the formatting of the SOAP messages that are passed between
your client and the Web service. We’ll look at these two attributes in more detail later.

To add the OneWay attribute, you can either use the SoapDocumentMethod attribute:

[WebMethod(Namespace=”http://preplogic.com”)]

[SoapDocumentMethod(OneWay = true)]

public void DoWork()

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Or the SoapRpcMethod attribute:

[WebMethod(Namespace=”http://preplogic.com”)]

[SoapRpcMethod(OneWay = true)]

public void DoWork()

Use Discovery Files to Publish a List of Web
Services that are Installed on a Web Server

All ASP.NET Web services can be queried for a discovery file by adding the DISCO parameter to the query
string. For example:

http://localhost:2467/WebSite/WebService.asmx?DISCO

This will return a dynamically generated discovery file for that particular Web service, as in the following:

<?xml version=”1.0” encoding=”utf-8” ?>

<discovery xmlns:xsi=”http://www.w3.org/2001/XMLSchema-instance”

 xmlns:xsd=”http://www.w3.org/2001/XMLSchema”

 xmlns=”http://schemas.xmlsoap.org/disco/”>

 <contractRef ref=”http://localhost:2467/WebSite/WebService.asmx?wsdl”

 docRef=”http://localhost:2467/WebSite/WebService.asmx”

 xmlns=”http://schemas.xmlsoap.org/disco/scl/” />

 <soap address=”http://localhost:2467/WebSite/WebService.asmx”

 xmlns:q1=”http://tempuri.org/” binding=”q1:WebServiceSoap”

 xmlns=”http://schemas.xmlsoap.org/disco/soap/” />

 <soap address=”http://localhost:2467/WebSite/WebService.asmx”

 xmlns:q2=”http://tempuri.org/” binding=”q2:WebServiceSoap12”

 xmlns=”http://schemas.xmlsoap.org/disco/soap/” />

</discovery>

It is also possible to manually create this file and make it available to the consumers of your Web service;
however, it is a lot easier to let the Web service create this file automatically.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Dynamically Discovering Web Services
In order to retrieve the discovery file for a Web service, you still need to know the address of the Web
service. ASP.NET allows dynamic discovery that will return references to all of the Web services available
under the requested URL.

To enable dynamic discovery, you need to add a mapping for .vsdisco to the httpHandlers section
of Web.config (or Machine.config, if you want to enable it for the entire server):

<add verb=”*” path=”.vsdisco”

type=”System.Web.Services.Discovery.DiscoveryRequestHandler “/>

Configuring and Customizing
a Web Service Application

Configure SOAP Messages

Specify the Basic Information for a Web Service Application
As we saw earlier, there are two attributes that are used to configure Web Services. The WebService at-
tribute is used to configure the overall Web service and the WebMethod attribute is used to configure the
methods of the Web Service. Both of these attributes are from the System.Web.Services namespace.

We’ve already looked at a few of the properties that can be used; we’ll now take a closer look.
The WebService attribute configures the basic details for the entire Web Service. The three properties
that you’ll most likely work with are as follows:

 n Description – this allows you to add a description for the service. It is not available in code
at the client but can provide a handy reference that is visible when viewing the Web service,
such as the views we saw in Figure 3 and Figure 4 earlier.

 n Name – by default, the name of the class is used as the name of the Web Service in the proxy
class. You can use the Name property to override this behavior.

 n Namespace – this property is used to specify a namespace, rather than the default http://
tempuri.org, for the Web Service.

The WebMethod attribute configures the details for a specific method of the Web Service. We’ve already
looked at two properties, Description and MessageName, of the WebMethod attribute. There are
several other properties that you may work with:

 n BufferResponse – used to determine whether the response to the client is buffered in
memory before it is sent to the client. The default value is true.

 n CacheDuration – setting to a value other than the default of zero caches the response for the
specified number of seconds and returns the cached response to the client.

 n EnableSession – by default, Web Services are non-sessional. Setting EnableSession to
true changes this behavior and allows the specified method to store session state as required.

 n TransactionOption – specifies whether the method will be transactional, using a value
from the TransactionOption enumeration. By default, transactions are disabled.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configure the Formatting of SOAP Messages for a Web Service Method
By using the classes in the System.Web.Services.Protocols namespace, you can configure the
formatting of Web Service messages.

Configuring the Parameter Formatting and Style for the Web Service
The SOAP specification supports two methods of formatting parameters, RPC and Document, and
you can specify which of these you want to use for your Web Service. By default, Web Services use
Document formatting.

You can change the formatting of the entire Web Service by applying the SoapDocumentService and
SoapRpcService attributes to the Web Service class. So, to change to RPC formatting, you’d declare
your Web Service as follows:

[WebService(Namespace=”http://preplogic.com”)]

[SoapRpcService()]

public class WebService : System.Web.Services.WebService

In addition to the overall formatting of the Web Service messages, you can also change the way that
parameters are encoded by setting the Use property of the SoapDocumentService and SoapRpc-
Service attributes. This property can take two values — Literal or Encoded — that specify how the
parameters are formatted within the message.

If you’re using Document formatting, it is also possible to specify how the parameters are encapsulated
within the body of the messages. By setting the ParameterStyle property of the SoapDocument-
Service attribute to either Bare or Wrapped, you can change how the parameters are encapsulated
within the message.

Configuring the Formatting for Methods of the Web Service
It is also possible to configure the formatting of individual methods of the Web Service using the Soap-
DocumentMethod and SoapRpcMethod attributes. Any properties that are set on the method over-
ride the values that are set on the overall Web Service.

We’ve already seen one property of these two attributes earlier — OneWay — but there are also several
more that you may use:

 n Action – specifies the name of the SOAPAction header of the SOAP request.

 n Binding – specifies the name of the binding for the method. By default, this is the name of the
method suffixed with Soap.

 n RequestElementName – specifies the XML element in the message for the request. The
default value is the name of the Web Service method.

 n RequestNamespace – the namespace for the request. By default, this is the same namespace
as specified for the overall Web Service.

 n ResponseElementName – specifies the XML element in the message for the response. The
default value is the name of the Web Service method suffixed with Response.

 n ResponseNamespace – the namespace for the response. By default, this is the same
namespace as specified for the overall Web Service.

 n Use – as with the same property for the overall Web Service, we can specify the parameter
encoding for individual methods.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

If you’re using Document formatting, you may also specify how the parameters are encapsulated within
the body of the message. By setting the ParameterStyle property of the SoapDocumente-
Method attribute to either Bare or Wrapped, you can change how the parameters are encapsulated
within the message.

Specify the Bindings of a Web Service Application
by Using the WebServiceBinding Attribute
The SOAP specification allows for several different methods of formatting Web Service messages. The WS-I
Basic Profile was specified by the Web Services Interoperability Organization with the goal of standardiz-
ing the functionality and formatting that is used across the different platforms.

You can use the WebServiceBinding attribute from the System.Web.Services namespace to
configure the binding information for the Web Service. There are several properties that you may be
interested in:

 n ConformTo – specifies the WS-I standard to which the Web Service claims to conform. The
default value is None, but this can also be set to BasicProfile1_1 to claim conformance to
version 1.1 of the WS-I Basic Profile.

 n EmitConformanceClaims – Set to true to specify that the binding outputs its
conformance claims.

 n Location – specifies the location where the binding is defined. By default, this is the URL of
the Web Service.

 n Name – species the name of the binding. By default, this is the name of the Web Service suffixed
with Soap.

 n Namespace – specifies the namespace of the binding. By default, this is the same namespace
as specified for the overall Web Service.

Configure a Web Service Application by Using a Configuration File
The overall functionality of Web Services can be configured using configuration files — either Machine.
config or Web.config. The <webServices> element of <system.web> allows you to specify several
configuration settings for Web Services using child elements:

 n protocols – allows you to specify the protocols that are supported by the Web Service:

 � HttpGet – the Web Service will accept parameters passed in the query string. The return
value is the body of the response and a simple XML document (it is not a SOAP message).

 � HttpPost – the Web Service will accept parameters passed in the body of the HTTP
request. The return value is the body of the response and a simple XML document (it is
not a SOAP message).

 � HttpPost – the Web Service will accept parameters passed in the body of the HTTP
request but only from the localhost. The return value is the body of the response and a
simple XML document (it is not a SOAP message). This value is ideal for testing purposes.

 � HttpSoap – the Web Service supports the SOAP protocol. A SOAP message is sent in
the request to the Web Service and the response is also a SOAP message.

 � Documentation – this is a special value that turns on the documentation page,
shown earlier in Figure 3 and Figure 4, for the Web Service. The documentation page is
returned when the Web Service is requested directly.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n serviceDescriptionFormatExtensionTypes – used to control the service description
format extension classes that are used to extend the WSDL that is automatically generated for
Web Services.

 n soapExtensionImporterTypes – specifies (for client applications only) any extension
classes that are used to extend the proxy generation process.

 n soapExtensionImporterTypes – specifies (for Web Services only) any extension classes
that are used to extend the WSDL generation process.

 n soapExtensionTypes – specifies any SOAP extensions that are used to inspect or modify
the SOAP message during processing. This element applies at both the client application and
the Web Service.

Manage Session State in Web Services
Web Services can handle session state in the same was as any ASP.NET application. There are three
methods that we can use and each of those methods has different performance implications. The most
scalable Web Services are those that don’t use session state.

In order for a method in a Web Service to use session state, you must set the EnableSession property
of the WebMethod attribute to true. It is set to false, by default, which means that your method will not
store any session information and accessing the Session object will cause a runtime error. The Appli-
cation object is available to all methods within the Web Service and does not need the method to be
marked as requiring session state.

Implement Session State by using the Application Object
Web Services have access to all of the functionality of ASP.NET; the Application object is no different.
All values set on the Application object in the method are visible to every other method that is using
session state.

Implement Session State by using the Session Object
As with the Application object, a Web Service can access the Session object as they would for any
other ASP.NET application. Only the current session can see values set in the Session object.

Implement Session State by using Cookies
In order for session state to work with Web Service methods, you must also manually store the client-side
cookie value that indentifies the session. When browsing an ASP.NET application, the browser is respon-
sible for managing cookies any will automatically pass the cookie that identifies the session to any calls
to the ASP.NET application. When calling a Web Service method in code, you don’t have this functionality,
and you must manually manage the cookies that are passed to the method call.

You need to store an instance of the CookieContainer class from the System.Net namespace and
attach this to every call to the Web Service.

Whatever the client application, you need to use the same CookieContainer instance for all calls in
the same session. For a Windows Forms client application, you may store the CookieContainer in a
global variable, whereas an ASP.NET client application may store the CookieContainer in the session.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The CookieContainer then needs to be added to the CookieContainer property of the proxy
class that is generated:

// get the cookie collection

System.Net.CookieContainer myCookies = null;

if (Session[“cookies”] == null)

{

 myCookies = new System.Net.CookieContainer();

}

else

{

 myCookies = (System.Net.CookieContainer)Session[“cookies”];

}

// create the web service proxy

localhost.WebService myService = new localhost.WebService();

// add the cookie container to the proxy

myService.CookieContainer = myCookies;

// call the required methods

string myString = myService.HelloWorld();

// store the returned cookie collection

Session[“cookies”] = myService.CookieContainer;

Implement SOAP Headers
A SOAP Header is an optional element of the SOAP Envelope that we saw earlier. SOAP Headers are de-
fined within the Web Service.

A SOAP Header can be added to individual method calls within the Web Service. It is also possible to add
multiple SOAP Headers to a method.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Add a Custom SOAP Header Class
A SOAP Header is created like any other class and must derive from the SoapHeader class in the Sys-
tem.Web.Services.Protocols namespace. By deriving from the SoapHeader class, the SOAP
Header gains access to the following properties:

 n DidUnderstand – whether the Web Service method understood and processed the header
that was passed.

 n MustUnderstand – set to true to indicate that the Web Service method must understand the
header that is passed. Failure to do so will cause ASP.NET to throw a SoapHeaderException
which will be returned to the client application.

Within the SOAP Header, you are free to define whatever properties you wish. A very simple SOAP Header
would be as follows:

public class MessageHeader : System.Web.Services.Protocols.SoapHeader

{

 public string Message;

}

Create a Public Instance of the Custom
SOAP Header Class in a Web Service Class
SOAP Headers should be defined within the Web Service and exposed as a public property of the Web
Service. For our simple SOAP Header, above, we would expose the property as follows:

public MessageHeader theMessage;

This exposes a property, theMessage, which can be set to a MessageHeader instance.

Apply a SoapHeader Attribute to a Web Method
To set a Web Service method to accept a SOAP Header, we use the SoapHeader attribute from the Sys-
tem.Web.Services.Protocols namespace. So, to define a Web Service method that accepts a
MessageHeader SOAP Header we can add the SoapHeader attribute as follows:

[WebMethod]

[SoapHeader(“theMessage”)]

public string ReturnMessage()

{

 return String.Empty;

}

The SoapHeader attribute requires one parameter – the name of the public property (not the type of
the property) that is used for the header.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Add SOAP Headers to Web Service Calls
The classes and properties that are defined in the Web Service for any SOAP Headers are automatically
generated at the proxy when adding a reference to the Web Service to your application. There is no need
to have the code that is required for the SOAP Header referenced at both the Web Service and the client
application. All of the required classes and properties will be defined within the proxy class for
the Web Service.

To add a SOAP Header to a Web Service method call, you need to create an instance of the required
header and pass this to the public property for that header:

// create the web service proxy

localhost.WebService myService = new localhost.WebService();

// create the required header

localhost.MessageHeader myHeader = new localhost.MessageHeader();

myHeader.Message = “I was passed as a SOAP Header”;

// attach the header to the Web Service

myService.theMessage = myHeader;

Any calls to the Web Service that are made after the SOAP header is attached will have the SOAP Header
automatically added.

Access and Process a SOAP Header in a Web Method
Within the Web Service method, the SOAP Headers that have been added can be accessed through the
public property that was defined for the SOAP Header. The SOAP Header is not passed to the Web Service
method as a parameter.

We can modify our ReturnMessage method from earlier to handle the MessageHeader SOAP Header:

[WebMethod]

[SoapHeader(“theMessage”)]

public string ReturnMessage()

{

 if (theMessage == null)

 return “You did not pass a message”;

 else

 return “Your message was: “ + theMessage;

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Set the Direction of a SOAP Header
By default, all SOAP Headers that you create are defined as only being passed from the client application
to the Web Service. It is possible to change this behaviour using the Direction property of the Soap-
Header attribute. The Direction property can accept four values:

 n In – the default value, indicating that the header is only passed from the client application to
the Web Service method. Any changes to the header within the Web Service method are not
passed back to the client application.

 n Out – used to indicate that the header only applies to the client application. Any value set for
the header by the client application is ignored and the value set by the Web Service method is
available to the client once the Web Service method call is complete.

 n InOut – combines both the In and Out functionality. Any value set by the client application is
available to the Web Service and any changes made by the Web Service method are passed back
to the client application.

 n Fault – specifies that the header is only available to the client if an exception is thrown by the
Web Service method.

To allow changes to the MessageHeader SOAP Header by the Web Service method to be returned

to the client application, we would modify the SoapHeader attribute as follows:

[WebMethod]

[SoapHeader(“theMessage”, Direction=InOut)]

public string ReturnMessage()

{

 if (theMessage == null)

 theMessage = “NO MESSAGE”;

 return “You did not pass a message”;

 else

 return “Your message was: “ + theMessage;

}

When returning from the Web Service method call, theMessage will contain “NO MESSAGE” if we
didn’t pass a SOAP Header to the Web Service method call.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Handle Unknown SOAP Headers
As we saw earlier, there are a couple of properties of the SoapHeader base class that allow us to specify
how headers are handled.

To force a Web Service method to understand a particular SOAP Header, you set the MustUnderstand
property to true:

myHeader.MustUnderstand = true;

The Web Service must then set the DidUnderstand property for all SOAP Headers that it doesn’t un-
derstand to false. ASP.NET assumes that all SOAP Headers are understood and sets the DidUnderstand
property to true – you must manually set it to false.

An unknown header cannot be instantiated at the Web Service (after all, it is unknown) so ASP.NET pro-
vides the SoapUnknownHeader class in the System.Web.Services.Protocols namespace. By
adding a public instance of this class to your Web Service, and specifying it for Web Service methods using
the SoapHeader attribute, any unknown SOAP Headers will be available within the Web Service method.

We may have multiple unknown SOAP headers, so we need to create an array of SoapUnknownHeader
objects as the public instance:

public SoapUnknownHeader[] unknownHeaders;

We can then add handling of unknown SOAP Headers to Web Service methods by adding a
SoapHeader attribute:

[WebMethod]

[SoapHeader(“theMessage”, Direction=InOut)]

[SoapHeader(“unknownHeaders”)]

public string ReturnMessage()

And then, within the method itself, we can set the DidUnderstand property to false:

 n foreach (SoapUnknownHeader unknownHeader in unknownHeaders)

{

 unknownHeader.DidUnderstand = false;

}

Implement SOAP Extensions
A SOAP Extension is a means of modifying the XML that is passed between the client application and
the Web Service before it is mapped to .NET objects. SOAP Extensions are used quite extensively by Web
Service Enhancements (WSE) to provide the required extra functionality.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create a Custom SOAP Extension
A SOAP Extension is created like any other class, and it must derive from the SoapExtension class in
the System.Web.Services.Protocols namespace. There are several methods and properties of
this class, but the ones that you’ll be most interested in are ChainStream and ProcessMessage.

The ChainStream method is used to provide access to the Stream that contains the message. Within
your SOAP Extension, you should store the Stream that is passed into the ChainStream method, as
this contains the stream that the other SOAP Extensions have modified. You must also provide a Stream
that the current SOAP Extension can modify:

Stream oldStream;

Stream newStream;

public override Stream ChainStream(Stream stream)

{
 oldStream = stream;

 newStream = new MemoryStream();

 return newStream;

}

The ProcessMessage method is abstract and must be implemented in a SOAP Extension. It accepts
one parameter, a SoapMessage instance, which contains the data at a specific stage in the serialization
and deserialization process. It is here that you must modify the Stream passed to ChainStream and
modify this as required to create the contents of the new Stream that is returned from the Chain-
Stream method.

At the Web Service, there are four stages to handling an incoming SOAP Message from
the client application:

 n BeforeDeserialize – the request has been received in the request stream, but the message
has not been deserialized into .NET objects.

 n AfterDeserialize – the message has been deserialized from the request stream, but the
Web Service method has not been called.

 n BeforeSerialize – the Web Service method has been called, but the return values have not
been serialized into the response stream.

 n AfterSerialize – the return values have been serialized into the response stream.

A similar process occurs at the client when a request is made to the Web Service, except that the stages
occur in a slightly different order:

 n BeforeSerialize – the Web Service method has been called, but the request has not been
serialized into the request stream.

 n AfterSerialize – the request has been serialized into the request stream, but has not been
sent to the Web Service.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n BeforeDeserialize – the response has been received from the Web Service in the response
stream, but the message has not been deserialized into .NET objects.

 n AfterDeserialize – the message has been deserialized from the response stream, but the
client application has been given the results yet.

You can determine which stage of the process that the ProcessMessage method is being called by
checking the Stage property of the SoapMessage instance:

public void ProcessMessage (SoapMessage message)

{

 switch (message.Stage)

 {

 case SoapMessageStage.BeforeSerialize:

 // do something

 break;

 case SoapMessageStage.AfterSerialize:

 // do something

 break;

 case SoapMessageStage.BeforeDeserialize:

 // do something

 break;

 case SoapMessageStage.AfterDeserialize:

 // do something

 break;

 default:

 // unknown message stage

 break;

 }

}

You can also determine whether the message being passed through ProcessMessage is a message
at the client application or a message at the Web Service by checking the type of the SoapMessage
instance. SoapMessage is an abstract class and has two concrete derived classes:

 n SoapClientMessage – a message at the client application: either the request being passed
to the Web Service or the response from the Web Service.

 n SoapServerMessage – a message at the Web Service: either the request received from the
client application or the response to the client application.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

We can use this to determine the action to perform. For instance, we can change the BeforeSerial-
ize processing as follows:

case SoapMessageStage.BeforeSerialize:

 if (message is SoapClientMessage)

 {

 // do something at client

 }

 else if (message is SoapServerMessage)

 {

 // do something at server

 }

 else

 {

 // unknown message type

 }

 break;

Configure a SOAP Extension
SOAP Extensions are added to the <soapExtensionTypes> element of <webServices> as follows:

<configuration>

 <webServices>

 <soapExtensionTypes />

 </webServices>

</configuration>

Within the <soapExtensionTypes> element you can use the <add>, <clear>, and <remove> ele-
ments to change the SOAP Extensions that are currently enabled.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Adding SOAP Extensions is accomplished using the <add> element and specifying the following attri-
butes, all of which are required:

Attribute Description

Type Specifies the fully qualified type of the SOAP Extension to add. If the SOAP Extension is
in the GAC it must include the version, culture and public key of the assembly contain-
ing the SOAP Extension.

Group Used with Priority to specify the ordering that the SOAP Extensions are applied.
This can be either 0 or 1 with a value of zero having the highest priority.

Priority Used with Group to specify the ordering that the SOAP Extensions are applied. Any
integer value is allowed with lower values having a higher priority.

Creating, Configuring, and Deploying
Remoting Applications
Remoting is a way to call objects located in different processes on different machines as if they were ob-
jects within the same application. Remoting is the successor to DCOM and hides all the complexities that
usually accompany these types of calls.

It is possible to host remote objects in four different places:

 n Console application – must be manually started and provides a very limited user-interface to
the client. Can support TCP, HTTP and IPC as the communications channel.

 n Windows application – must be manually started, but provides a more functional user-interface
to the client. Can support TCP, HTTP and IPC as the communications channel.

 n ASP.NET application – hosted within IIS and able to take advantage of the full functionality of
IIS (session state, caching, security features such as SSL). Can only be used with HTTP as the com-
munication channel.

 n Windows service – runs automatically and can easily be monitored; however, debugging is
limited. Can support TCP, HTTP and IPC as the communications channel.

To connect to a remote object you use a channel. All communications with the remote object are per-
formed across the same channel. To use a remote object, a channel must be registered and the same
channel can only be registered once on a machine. There are three possible channels:

 n TCP – communication is formatted in binary and transmitted across the network using sockets.
This is the fastest channel that you can use when the remote object is on a different machine.

 n HTTP – communication is SOAP formatted using the XML serializer to handle messages to the
remote object. Can be configured to use the binary formatter.

 n IPC – an inter-process communication (IPC) channel that can be used when communication is
on the same machine. Security is controlled using access control lists.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

There are three types of remote objects that can be created:

 n Single-call – these objects are managed on the server and are only used in a single method call
and then disposed of. They don’t maintain state between calls.

 n Singleton – these objects are managed on the server and one object is used for all requests.
State is maintained between method calls. Singleton remote objects can offer a performance
advantage over single-call, as a new object doesn’t need to be created on every call to the
remote object.

 n Client-activated – only activated when requested by a client with the client receiving a dedi-
cated object, even though the remote object exists on the server.

Create and Configure a Server Application

Create a Server Application Domain
An object can be instantiated as a remote object if it inherits from MarshalByRefObject rather than the
default Object. All remotable objects must inherit from MarshalByRefObject.

All remotable objects, being derived from MarshalByRefObject, are passed by reference. It is also possible
to create a pass-by-value remote object by marking the object serializable using the Serializable attribute.

Once you have a remotable object, you need to configure the hosting application. You can do this either
programmatically or by using configuration files.

Configure a Server Application Programmatically
Configuring Channels
To configure a hosting application for remoting you need to decide on the channel you wish to use and
then call the static RegisterChannel method of System .Runtime . Remoting .Channels .ChannelServices.

Each of the supported channels has their own class, implementing the IChannel interface, which you need
to create and then pass as the constructor to the RegisterChannel method:

 n TCP – System .Runtime .Remoting .Channels .Tcp .TcpChannel – pass the required port number to
the class constructor.

 n HTTP – System .Runtime .Remoting .Channels .Http .HttpChannel – pass the required port number to
the class constructor.

 n IPC – System .Runtime .Remoting .Channels .Ipc .IpcChannel – pass the name of the channel to the
class constructor.

You can also unregister a channel and stop listening for requests for remote objects by calling the Unregis-
terChannel method — again passing in a class that implements the IChannel interface.

Configuring Remote Objects
Once you call the RegisterChannel method, and provided an error is not returned, the hosting applica-
tion then needs to be configured for the specific remote objects. You need to call a static method of the
System .Runtime .Remoting .RemotingConfiguration class.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

To enable a server-activated remote object, you need to call the static RegisterWellKnowServiceType
method passing the type of the object, a unique URI for the object, and the activation mode. For a single-
call object you’d call:

RemotingConfiguration.RegisterWellKnownServiceType(

 typeof(MyRemoteClass), “MyRemoteObject”,

 WellKnownObjectMode.SingleCall);

And for a singleton object you’d call:

RemotingConfiguration.RegisterWellKnownServiceType(

 typeof(MyRemoteClass), “MyRemoteObject”,

 WellKnownObjectMode.Singleton);

For client-activated remote objects you need to call the RegisterActivatedServiceType method:

RemotingConfiguration.RegisterActivatedServiceType(

 typeof(MyRemoteClass));

Versioning
It is possible to have different versions of the same assembly used by a hosting application. By default, the
runtime uses the latest version of the type. It is possible to override this behavior by specifying the ver-
sion of the type to use in the call to the RegisterWellKnownServiceType method. For example:

RemotingConfiguration.RegisterWellKnownServiceType(

 typeof(MyRemoteClass, Version=1.0.0.0), “MyRemoteObject”,

 WellKnownObjectMode.SingleCall);

Changing the Channel Formatting
By default, a TcpChannel uses binary formatting, an HttpChannel uses SOAP formatting and an IpcChannel
uses binary formatting. It is possible to change this behavior by passing a different channel to the Regis-
terChannel method.

 n TCP – System .Runtime .Remoting .Channels .Tcp .TcpServerChannel – pass the required port number
and the required formatter to the class constructor.

 n HTTP – System .Runtime .Remoting .Channels .Http .HttpServerChannel – pass the required port
number and the required formatter to the class constructor.

 n IPC – System .Runtime .Remoting .Channels .Ipc .IpcServerChannel – pass the name of the channel
and the required formatter to the class constructor.

The required formatter is an instance of a class that implements the IServerChannelSinkProvider interface
— either the BinaryServerFormatterSinkProvider or SoapServerFormatterSinkProvider.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configure a Server Application using Configuration Files
Programmatically configuring the hosting application removes a lot of flexibility from the application by
hard coding all the channel properties. To remove this problem you use configuration files to specify all of
the properties for the hosting application and the remote types that are hosted.

Remoting settings for an application are stored within the <system .runtime .remoting> element of a con-
figuration file. All configuration settings are contained within an <application> element.
For ASP.NET applications, the configuration settings will be stored in the standard Web.config file and will
automatically be picked up by the application.

For all other hosting applications, you need to call the Configure method of the RemotingConfiguration
class, specifying the name of the configuration file.

Configuring Channels
Channels are configured using the <channels> element of the <system .runtime .remoting> element. For
each channel, there will be a separate <channel> element. This element has several attributes, the most
important of which are shown in the following table:

Attribute Description

ref Specifies the channel type to use - tcp, http or ipc. This is a shortcut way to specify
the type.

type The full type name of the channel. Can be used instead of ref.

port Used with TCP and HTTP to specify the port number to use.

portName Used with IPC to specify the name of the IPC channel.

machineName The name of the machine hosting the remote object.

useIPAddress Specifies whether machineName is an IP address or a URL.

Configuring Remote Objects
Once channels are configured, you then need to register the remote objects by specifying the objects in
the <service> element of <system .runtime .remoting>.

For server-activated objects, you specify each object using a <wellKnown> element, specifying the
following attributes:

Attribute Description

mode Specifies whether the object is SingleCall or Singleton.

Type The full type name of the remote object.

objectUri Used to specify a unique URI for the remote object. This is not the same as the URL
that is used to access the object from the client.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

For client-activated objects, you specify each object using an <activated> element, specifying
the following attributes:

Attribute Description

type The full type name of the remote object.

Versioning
By default, the latest version of an assembly is used if two versions of the same assembly are used by the
hosting application. You can specify the version required by adding the version number to the type at-
tribute of the <wellKnown> and <activated> elements.

Change the Channel Formatting
By default, a TcpChannel uses binary formatting, an HttpChannel uses SOAP formatting and an IpcChannel
uses binary formatting. It is possible to change this behavior by adding a <serviceProvider><formatter>
element as a child of the required <channel> element.

The <formatter> element is configured using, among others, the following attributes:

Attribute Description

ref Specifies the formatter to use — binary or soap. This is a shortcut way to specify
the type.

type The full type name of the formatter. Can be used instead of ref.

Create a Client Application to Access a Remote Object

Create a Remote Object
When using a remote object, your application is actually using a proxy object, which is just a pointer to the
remote object. This proxy makes it appear as though the remote object is no different than a normal object.

The proxy is created whenever the client requests a remote object. When the remote object is instanti-
ated depends on whether the object is a server or client activated object. A server-activated object
(single-call or singleton) is not instantiated until a request is made to one of the methods of the object.
With a client-activated object, the object is activated as soon as it is created.

For both server-activated and client-activated objects, the client application needs a reference to the as-
sembly containing the remote object being activated.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configure a Client Application Programmatically
Configuring Channels
To configure a client application to access a remote object, you need to know which channel you’re using
and then call the static RegisterChannel method of System .Runtime . Remoting .Channels .ChannelServices.

Each of the supported channels has their own class implementing the ICientChannel interface, which you
need to create and then pass as the constructor to the RegisterChannel method:

 n TCP – System .Runtime .Remoting .Channels .Tcp .TcpClientChannel – pass the required port number
to the class constructor.

 n HTTP – System .Runtime .Remoting .Chan .nels .Http .HttpClientChannel – pass the required port
number to the class constructor.

 n IPC – System .Runtime .Remoting .Channels .Ipc .IpcClientChannel – pass the name of the channel to
the class constructor.

Configuring Remote Objects
To configure a client to access a server-activated remote object, you need to call the static Register-
WellKnownClientType method passing the type of the object and its URL:

For both single-call and singleton objects, you’d call:

RemotingConfiguration.RegisterWellKnownClientType(

 typeof(MyRemoteClass), “http://remoteServer/object.rem”);

For client-activated remote objects, you need to call the RegisterActivatedClientType method passing the
type of the object and its URL:

RemotingConfiguration.RegisterActivatedClientType(

 typeof(MyRemoteClass) , “http://remoteServer/object.rem”);

Configure a Client Application using Configuration Files
Remoting settings are stored within the <system .runtime .remoting> element of a configuration file. All
configuration settings are contained within an <application> element.

For ASP.NET applications, the configuration settings will be stored in the standard Web.config file and will
automatically be picked up by the application.

For all other hosting applications, you need to call the Configure method of the RemotingConfiguration
class, specifying the name of the configuration file.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configuring Channels
Channels are configured using the <channels> element of the <system .runtime .remoting> element. For
each channel, there will be a separate <channel> element. This element has several attributes, the most
important of which are shown in the following table:

Attribute Description

ref Specifies the channel type to use — tcp, http or ipc. This is a shortcut way to specify
the type.

type The full type name of the channel. Can be used instead of ref.

priority Higher priority channels will be used first.

Configuring Remote Objects
Once the channels are configured, you will then need to register the remote objects by specifying the
objects in the <client> element of <system .runtime .remoting>.

For server-activated objects, you specify each object using a <wellKnown> element, specifying the
following attributes:

Attribute Description

type The full type name of the remote object.

url The URL used to access the remote object.

For client-activated objects, you specify each object using an <activated> element, specifying the
following attributes:

Attribute Description

type The full type name of the remote object.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Access the Remoting Service by Calling a Remote Method
There are two ways to create and access a remote object. If the remote object is already configured at the
client (as we’ve seen in the last two sections), creating an instance of the remote object using new will cre-
ate the proxy and connect to the remote object correctly.

It is also possible to use the Activator .GetObject method to create an instance of a remote object passing in
the type and URL of the remote object. The GetObject method returns an Object, so you need to cast it to
the correct type, as follows:

MyRemoteObject objRemote = (MyRemoteClass)Activator.GetObject(

 typeof(MyRemoteClass), “http://remoteServer/object.rem”);

Once the object has been created (via Activator .GetObject or by using the new keyword), accessing the re-
mote object synchronously is the same as accessing a local object. The proxy for the remote object makes
all requests to the remote object no differently than it does for a local object.

Debug and Deploy a Remoting Application

Use Performance Counters to Monitor a Remoting Application
There are several Remoting-specific performance counters available. When adding performance counters
in the Performance Monitor utility, there is a specific category of counters, .NET CLR Remoting, that contain
all of the counters specific to remoting, as shown in the chart below:

Counter Description

Channels Shows the total number of channels registered since the
application started.

Context Proxies Shows the total number of proxy objects created since the
application started.

Context-Bound Classes Loaded Shows the current number of context-bound classes loaded.

Context-Bound Objects Alloc/sec Shows the current number of context-bound objects allocated
per second.

Contexts Shows the current number of contexts in the application.

Remote Calls / sec Shows the number of calls to remote objects per second.

Total Remote Calls Shows the total number of calls to remote objects since the
application started.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Debug a Remoting Application
To debug remote objects in Visual Studio, you need to attach the debugger to the hosting application
before you execute the client application. You can do this by selecting Attach to Process from the Debug
menu in Visual Studio (if the hosting application is on another machine, you will need to configure that
machine for remote debugging). Once you’ve attached to the hosting application, you can start debug-
ging of the client application.

Handling Exceptions
Errors that occur in the remote object are handled by the runtime and passed back to the client applica-
tion as a RemotingExcepction. You should catch this particular type of exception and handle it correctly.

Tracking Remoting
In addition to performance counters, it is possible to provide more granular reporting by making use of
Tracking Services provided by System .Runtime .Remoting.

To make use of tracking you need to create a class that implements the ITrackingHandler interface (in
System .Runtime .Remoting), implementing the following methods:

Method Description

DisconnectedObject Called whenever an object is disconnected from the proxy.

MarshalledObject Called when an object is marshaled.

UnmarshalledObject Called when an object is unmarshaled.

You then use the TrackingServices class (in System .Runtime .Remoting) to register (RegisterTrackingHandler)
and unregister (UnregisterTrackingHandler) the class that implements the ITrackingHandler interface.

Deploy a Remoting Application
Remote objects must be deployed with both the hosting application and each client application that calls
the remote object.

Deploying a Hosting Application
The most common method of deploying a hosting application is to create a setup project for the applica-
tion. The type of setup project is determined by the hosting application:

 n Windows Setup Project – used to deploy Console Applications, Windows Applications and
Windows Services.

 n Web Setup Project – used to deploy ASP.NET Applications.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Deploy a Client Application
You can deploy a client application in three different ways:

 n Deploy the remote assembly – simply deploy the remote assembly and reference it directly
within the client application.

 n Deploy an interface – define an interface that is implemented by the remote object and build
it to its own assembly. As the interface specifies the functionality of the remote object, you only
need to deploy the interface to the client application for it to reference.

 n Use soapsuds.exe – the soapsuds.exe application can be used from the command-line to create
an assembly that can be referenced by the client. The developer only needs to know the URL to
access the hosting application and create the necessary assembly.

Manage the Lifetime of Remote Objects
Due to remoting operating over process boundaries (i.e., from the client application to the hosting ap-
plication) the garbage collector is not able to manage objects that are involved in remoting correctly.
The client application holds the reference to a remote object in the hosting application but the hosting
application has no knowledge of the client application; therefore, the remote object instantiated has, as far
as the garbage collector is concerned, no references and can be cleaned up.

This problem is overcome by the use of lease objects in the hosting application. A lease object is similar
to a proxy object in the client application. The lease object references the remote object and stops the
garbage collector from automatically cleaning up the remote object.

Initialize the Lifetime of a Remote Object
Lease objects at the hosting application are created automatically when a remote object is requested.
Lease objects are only maintained for a specified period of time (5 minutes by default) and, once the lease
expires, the remote object is garbage collected. It is possible to modify the lease settings by overriding
the InitializeLifetimeService method of the MarshalByReference base class.

Within the overridden InitializeLifetimeService method, you first need to get a reference to the lease itself
(as an ILease interface from the System .Runtime .Remoting .Lifetime namespace), check that it’s not an active
lease, set the properties of the lease as required and then return the lease from the method:

public override object InitializeLifetimeService()

{

 ILease myLease = (ILease) base.InitializeLifetimeService()

 if (myLease.CurrentState == LeaseState.Initial)

 {

 // set the properties we want as required

 }

 return(myLease);

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You can specify how the lease is handled using, amongst others, the following methods:

Property Description

InitialLeaseTime Gets or sets the initial time to keep the lease alive for. The default value is
five minutes.

RenewOnCallTime Used to renew the lease every time the object is used. The default value is 2
minutes. If the object is called with less than RenewOnCallTime minutes until
it expires it is renewed for a further period of RenewOnCallTime.

It is also possible to configure the lease of a remote object in the configuration files for the hosting ap-
plication. The <application> element of the <system .runtime .remoting> element has a <lifetime> element
that can be used to specify the lease time for all remote objects in the application (which can then be
overridden by the remote objects themselves in the InitializeLifetimeService method). There are several
attributes of the <lifetime> element the most useful of which are as follows:

Property Description

leaseTime Sets the default value for InitialLeaseTime.

renewOnCallTime Sets the default value for RenewOnCallTime.

Renew the Lifetime of a Remote Object
Once a lease has been created (i.e., the InitializeLifetimeService method has been called), changing the
properties of the lease has no effect. Although the lease will be renewed automatically, it is also possible
to manually renew the lease, for a specific period of time, by calling the Renew method of the ILease inter-
face on the client.

To do this you must have an instance of the remote object and call the static GetLifetimeService method of
the RemotingServices class to return the ILease object. You can then call the Renew method specifying the
amount of time to keep the lease active. For example, to renew a lease for 30 minutes, you would
call the following:

MyRemoteObject objRemote = new MyRemoteObject();

ILease myLease = (ILease) RemotingServices.GetLifetimeService(objRemote);

myLease.Renew(TimeSpan.FromMinutes(30));

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implementing Asynchronous
Calls and Remoting Events

Call Web Methods Asynchronously
You’ve already seen that calling a Web Method synchronously is no different than calling a method on a
local class. The proxy object created at the client makes the methods of the Web Service appear as though
they’re local method calls.

So if we have a Web Method called CalculateCost, exposed by the CostingService Web Service,
then we have a synchronous method created as follows:

public int CalculateCost(int intProductID)

We can call this method of the proxy class as we would any other method and the call to the Web Service
will be made synchronously.

It is also possible to call the methods of a Web Service asynchronously.

Call a Web Method
When the proxy object for the Web Service is created, a corresponding method is created for each method

exposed by the Web Service using the WebMethod attribute. There are also several other methods
created to enable asynchronous access.

There will also be methods created that allow asynchronous calling of the method. In particular, there will

be a method created with Async appended to the method name that allows the method to be called
asynchronously. This method will have the following signature:

public void CalculateCostAsync(int intProductID, int intQuantity)

You’ll notice that it doesn’t return the same type as CalculateCost. In fact, it returns nothing, and you
will need to make use of another auto-generated construct — the completed event handler for the asyn-
chronous method — for it to work correctly.

Within the proxy, there will be a CalculateCostCompletedEventArgs class that inherits from
the System.ComponentModel.AsyncCompletedEventArgs class. This class exposes a Result
property that is typed as the return from the synchronous method call — in this case, an int. This event
arguments class is used in the event handler for the asynchronous event handler completion:

public event CalculateCostCompletedEventHandler CalculateCostCompleted;

public delegate void CalculateCostCompletedEventHandler(

 object sender, CalculateCostCompletedEventArgs e)

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

By making use of the asynchronous method and the event handler, we can call the method asynchro-
nously. We first need to create an instance of the proxy class and attach an event handler before invoking
the asynchronous call, as follows:

// create an instance of the Web Service proxy

CostingService myService = new CostingService();

// add the completed event handler

myService.CalculateCostCompleted +=

 new CalcualateCostCompletedEventHandler(CostingCompleted);

// call the asynchronous method

myService.CalculateCostAsync(5, 10);

And, we then need to define the method that handles the completed event:

private void CostingCompleted(object sender,

 CalculateCostCompletedEventArgs e)

{

 // do what we need to do with “e”

 // it has a property called Result

 // that is typed correctly

}

Once you make an asynchronous call to a Web Service, it is a case of waiting until the attached event
handler is fired. You can, however, cancel the asynchronous call by calling the CancelAsync method of
the proxy instance:

myService.CancelAsync();

This will fire the completed event handler for any outstanding asynchronous calls; you can handle this by
checking the Boolean Completed property of the event arguments class passed to the event handler.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Poll for the Completion of a Web Method
It is also possible to call the methods of a Web Service using the standard asynchronous methodology
provided by the IAsyncResult interface.

Each method exposed by the Web Service also has Begin<method> and End<method> methods that allow
the Web Service to be called asynchronously and polled to check if the method has completed.

So, for our CalculateCost method, we also have BeginCalculateCost and EndCalculateCost
methods that can be used to call the method asynchronously, as follows:

// create an instance of the Web Service proxy

CostingService myService = new CostingService();

// call the asynchronous method

IAsyncResult myResult = myService.BeginCalculateCost(5, 10, null, null);

// loop until the method is completed

while (myResult.IsCompleted == false)

{

 // wait

}

// return the results of the method call

int intCost = EndCalculateCost(myResult);

// deal with the result

Note, however, that the while loop is blocking execution of the thread until the method returns — effec-
tively no better than a synchronous call. A better solution is to use a callback to handle completion of the
method call.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement Callback
Instead of polling for completion of the asynchronous call, we can also use the standard callback mecha-
nism to retrieve the results of the method call. We still make use of Begin<method> and End<method>
methods but, instead, we add a callback handler as follows:

// create an instance of the Web Service proxy

CostingService myService = new CostingService();

// create the callback handler

AsyncCallback myCallback = new AsyncCallback(CostReturned);

// call the asynchronous method

IAsyncResult myResult = myService.BeginCalculateCost(5, 10,
myCallback, null);

We then need to implement the callback handler:

private void CostReturned(IAsyncResult myResult)

{

 // return the results of the method call

 int intCost = EndCalculateCost(myResult);

 // deal with the result

}

Call a One-Way Web Method
Web methods that are marked as one-way methods (by setting the OneWay property of the SoapDocu-
mentMethod or the SoapRpcMethod attributes) are designed to be called and then forgotten about
— a fire-and-forget scenario. When calling an OneWay method, you use the synchronous method of the
proxy and the code within your application continues immediately — there is no delay in waiting for the
method call to complete.

Call Remoting Methods Asynchronously
When we looked at remoting earlier, all calls to the remote object were synchronous. Irrespective of how
the remote object is activated (either on the server or on the client), the call to the remote method is the
same as calling a method of an object created locally.

It is also possible to call the methods of remote object asynchronously — i.e., we can poll for completion
of the method call or we can use a callback mechanism to indicate that the method call has completed.
First, however, we’ll look at calling the methods of a remote object in a fire-and-forget scenario.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement One-Way Methods by Using the OneWay Attribute
In addition to calling the methods of remote objects and waiting for a response (which is the way that we
saw when we looked at remoting earlier), it is also possible to call methods of a remote object and then
forget about them — the aforementioned fire-and-forget scenario.

Within the remote object, we need to mark the method of the class (or, if we’re sharing an interface rather

than the full class, both the interface and the class) that we want to make one-way with the OneWay
attribute, as follows:

[OneWay()]

public string DoSomeWork()

{

 // do some work

}

Now when we call this method within our client application, irrespective of what happens within the
remote object, the call to the DoSomeWork method will have no effect on the client application. Any re-
sults returned by the DoSomeWork method are ignored (we’ve forgotten about it after all) and any excep-
tions raised during the call (even if the remote object is not available) will not be propagated to
the client application.

Call a Remote Method Asynchronously
Polling for completion of a method call to a remote object is fundamentally the same as polling to check
the completion of a call to a Web Service. We return an instance of an IAsyncResult object and check
the status of the IsCompleted property. However, calling a method of a remoting object is slightly
more complex, as the asynchronous methods aren’t created automatically for you. You need to create a
delegate for each method that you want to call asynchronously.

If we take the DoSomeWork() method that we’ve just seen — assuming that we no longer have it
marked as a one-way method call — we can make it asynchronous relatively easily.

We must first create a delegate that matches the signature of the method:

private delegate string BuildDoSomeWorkDelegate();

The naming of the delegate is arbitrary, and we’ve chosen to prefix the name of the method with Build
and suffix it with Delegate. We can then use this delegate to call the method asynchronously.

We first need to create an instance of the remote class (or an instance of the shared interface) and activate
it. Assuming that we’ve already configured remoting to operate across an HTTP channel, we can create an
instance of our remoting object as follows:

// create an instance of the remote object

MyRemoteClass objRemote = (MyRemoteClass)Activator.GetObject(

 typeof(MyRemoteClass), “http://remoteServer/object.rem”);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

We can then use this class to create our delegate:

// create the necessary delegate

BuildDoSomeWorkDelegate myDelegate = new

 BuildDoSomeWorkDelegate(objRemote.DoSomeWork);

We then call the BeginInvoke() method of the delegate passing null for both parameters (if the
method had parameters, these would be passed before the two null values that we pass here):

// call the method asynchronously

IAsyncResult myResults = myDelegate.BeginInvoke(null, null);

We can then poll the IsCompleted property to check that the method hasn’t completed, before calling
the EndInvoke() method to retrieve the result of the method call:

// loop until the method is completed

while (myResult.IsCompleted == false)

{

 // wait

}

// return the results of the method call

string strReturn = EndInvoke(myResult);

// deal with the result

The while loop blocks execution and this obviously isn’t ideal. We can make use of the callback mecha-
nism to provide a more elegant solution.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement Callback
Once we’ve created a delegate we can create a callback mechanism by making use of the AsyncCall-
back object to handle the return from the method call.

We need to create the remote object and the necessary delegate. This is the same code as we saw when
we polled for completion of the method call:

private delegate string BuildDoSomeWorkDelegate();

// create an instance of the remote object

MyRemoteClass objRemote = (MyRemoteClass)Activator.GetObject(

 typeof(MyRemoteClass), “http://remoteServer/object.rem”);

// create the necessary delegate

BuildDoSomeWorkDelegate myDelegate = new

 BuildDoSomeWorkDelegate(objRemote.DoSomeWork);

We then need to create the callback handler before:

// create the callback handler

AsyncCallback myCallback = new AsyncCallback(DoSomeWorkReturned);

We then pass the AsyncCallback instance as the first parameter to the BeginInvoke() method:

// call the asynchronous method

IAsyncResult myResult = myDelegate.BeginInvoke(myCallback, null);

We then need to implement the callback handler:

private void DoSomeWorkReturned (IAsyncResult myResult)

{

 // return the results of the method call

 string strReturn = EndInvoke(myResult);

 // deal with the result

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement Events in Remoting Applications
As we discussed earlier, handling method calls to a remote object is, in many ways, no different than
calling the methods of a normal object. As a developer, you’re shielded from most of the complexities of
calling the remote methods.

The same is also true of events. However, there is a little more configuration required at the client.

Method calls are one way events (i.e. the client calls the server), but when an event is raised, it is the server
calling the client. The client needs to accept the incoming event and must have channels that correspond
to the channels that are used to access the remote object.

So if we have a remote object that is configured to accept HTTP connections using the following configuration:

<configuration>

 <system.runtime.remoting>

 <application>

 <service>

 <wellknown mode=”Singleton” type=”MyRemoteClass”

 objectUri=”MyRemoteClass” />

 </service>

 <channels>

 <channel ref=”http” port=”8080” />

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

We also need to define a corresponding channel at the client. As we must accept incoming connections
on any port (we talk to the server on port 8080, but it may talk back to us on any port) we need to define a
similar client configuration:

<configuration>

 <system.runtime.remoting>

 <application>

 <client>

 <wellknown type=”MyRemoteClass”

 url=”http://remoteServer:8080/object.rem” />

 </client>

 <channels>

 <channel ref=”http” port=”0” />

 </channels>

 </application>

 </system.runtime.remoting>

</configuration>

The client accepts connections across the same channel, but instead of listening on a single port (as the
server does), it listens on all the ports that are available.

As it stands, we’ve still not quite configured the channels correctly. If you try to pass an event from the re-
mote object to the client using this configuration you’ll get a runtime error — by default, events cannot be
passed across remoting boundaries. We need to configure the formatter for the channel to pass delegates
by setting the typeFilterLevel property of the formatter element. For both the client and server
configuration, we need to set the formatter as a child of the <channel> element, as follows:

<serverProviders>

 <formatter ref=”soap” typeFilterLevel=”full”>

</serverProviders>

We’re configuring the SOAP formatter for the HTTP channel (as you’ll recall, this is the channel’s default for-
matter) to pass the delegate. We must set this attribute on every channel that we want to accept events.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create and Fire Events
Events in a remote object are no different from events in a local object. The shared object (or the shared
interface) will define the event delegate and the implementation of the object will raise the specific event.

As an example, we can modify our DoSomeWork() method from earlier to raise a WorkDone event in
the same way as we’d raise any other event.

We need to create a delegate for the event that we’re going to raise. We’re going to assume the simplest
delegate we can:

public delegate void WorkDoneEvent(object sender, EventArgs e);

Within the MyRemoteClass class, we can now create an instance of the WorkDoneEvent delegate and
the WorkDone event, and raise it within the DoSomeWork() method:

[Serializable()]

public class MyRemoteClass : MarshalByRefObject

{

 // event that we can attach to

 public event WorkDoneEvent WorkDone;

 public string DoSomeWork()

 {

 // raise the event

 WorkDone(this, EventArgs.Empty);

 // do some work

 }

}

This is the same process for creating and raising the event, irrespective of whether we’re raising the event
in a remote object or a local object. The one change that we would make to the process is that we’d prob-
ably create a class derived from EventArgs so that we can pass some meaningful information within the
event, rather than passing nothing, as we do in this example.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Passing the Event from the Remote Object to the Client
However, we can’t simply attach the client to the events exposed by the remote object. The remote object
needs a reference to the local object to call the event — there is no way that we can provide this. The cli-
ent has a reference to the server, but the server does not have a reference to the client. It would therefore
be impossible to add a reference to every possible client to the remote object.

In order to get around this problem, we need to create a helper class that we can share between the client
and server. This helper class will perform the “heavy lifting” for us. We’ll create this helper class at the cli-
ent and it will subscribe to the server events. When the server raises its events, the helper class will simply
pass the same event to the client.

We first need to create a matching event in the helper, just as we have for the remote object:

[Serializable()]

public class MyRemoteClassHelper : MarshalByRefObject

{

 // matching event from MyRemoteClass class

 public event WorkDoneEvent WorkDone;

We then need to create a constructor that accepts an instance of the remote object and attaches to its
WorkDone event:

 // variable to hold the remote object

 private MyRemoteClass m_objSource;

 public MyRemoteClassHelper(ref MyRemoteClass objSource)

 {

 // store the server object

 m_objSource = objSource;

 // add the event handler

 m_objSource.WorkDone += new WorkDoneEvent(WorkDoneHandler);

 }

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

And then we need to implement the event handler that simply passes the incoming event to any sub-
scribed event handlers:

 private void WorkDoneHandler(object sender, EventArgs e)

 {

 // pass the event out

 WorkDone(sender, e);

 }

We also need to ensure that the helper object is never garbage collected by overriding the Initiali-
zeLifetimeService() method, returning a null value:

 // override to stop any garbage collection issues

 public override object InitializeLifetimeService()

 {

 return (null);

 }

}

We can now use an instance of the helper class to subscribe to the events of the remote object. By mak-
ing the helper object available to the server, the event can be passed from the server to the helper object.
Additionally, because the helper object is also available to the client, the event can then be passed from
the helper object to the client application.

Implement Event Handlers for the Events of Remote Objects
The final piece of the puzzle is subscribing the client to the necessary events. As we’ve seen, we can’t do
this directly, and we need to make use of the helper object.

Assuming that we’ve already configured remoting, we can create an instance of the remote object as we
would with any other remoting object:

// create an instance of the remote object

MyRemoteClass objRemote = (MyRemoteClass)Activator.GetObject(

 typeof(MyRemoteClass), “http://remoteServer/object.rem”);

We then need an instance of our helper object. We create this by passing in a reference to the remote
object that we’ve created:

// create an instance of the helper object

MyRemoteClassHelper objHelper = new MyRemoteClassHelper(objHelper);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

At this point, the helper would receive the events raised by the server, but wouldn’t pass these to the client
application. We need to add the event handler for the WorkDone event of the helper object:

// add the event handler

objHelper.WorkDone += new WorkDoneEvent(WorkDoneHandler);

We then need the method, WorkDoneHandler(), which handles the event from the helper object:

private void WorkDoneHandler(object sender, EventArgs e)

{

 // handle the event

}

Whenever the DoSomeWork() method of the remote object will raise the WorkDone event, that will be
propagated from the remote object to the client via the helper object.

Implementing Web Service Enhancements
(WSE) 3.0
Web Service Enhancements (WSE) 3.0 is the third iteration of Microsoft’s implementation of the WS-*
suite of Web Service standards. A complete overview of WSE 3.0 can be found at http://msdn2.microsoft.
com/webservices/aa740663.aspx.

As we saw when we looked at both Web Services and Remoting earlier, the developer is shielded from
most of the underlying complexities. The same is also true of WSE 3.0.

Enable WSE in Client and Server Applications
Before you can use the features of WSE 3.0, you will need to install it. You’ll find the download for WSE 3.0
linked from the WSE 3.0 homepage at http://msdn2.microsoft.com/webservices/aa740663.aspx. Make
sure that you install WSE 3.0, as the previous two versions of WSE contain enough differences to be consid-
ered completely different implementations.

You need to install WSE 3.0 on both the client and server machines and, by default, it is installed in the
Microsoft WSE\v3.0\ folder in C:\Program Files\. The main assembly that you will make use
of is Microsoft.Web.Services3 and this is, along with being in the installation folder, also installed
in the Global Assembly Cache (GAC).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Add References to the WSE Assemblies
In order to use WSE 3.0, you need to add a reference to the Microsoft.Web.Services3 assembly. This needs
to be done in both the client and server applications and is as simple as selecting the Add Reference op-
tion for a project and selecting the Microsoft.Web.Services3 assembly, as shown in Figure 5-1.

 Figure 5-1 - Adding a reference to WSE 3.0

Clicking OK will add the reference to the application. For a Web Site or Web Service project, you’ll see that a
reference has been added to the <assemblies> section of web.config. For all other project types, you’ll
see the Microsoft.Web.Services3 assembly listed under the References node in Project Explorer.

WSE 3.0 Configuration under Visual Studio 2005
When using WSE 3.0 in conjunction with Visual Studio 2005, you can use a handy utility that allows you to
perform the configuration necessary to enable WSE 3.0.

The context menu for projects in Project Explorer has a new entry (WSE Settings 3.0) added that allows
you to configure WSE 3.0 very easily. The first page of the dialog is shown in Figure 5-2.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Figure 5-2 – Enabling WSE 3.0 in a Visual Studio project

Selecting the first option — Enable the project for Web Service Enhancements — will add the reference to
the Microsoft.Web.Extensions3 assembly automatically and also configure the project configura-
tion file (either app.config or web.config) by adding the <configSections> element.

The second option — Enable Microsoft Web Services Enhancement Soap Protocol Factory — is only avail-
able if the project is an ASP.NET Web Site or ASP.NET Web Service project. This option adds the configura-
tion section necessary to enable the exposed Web Services to access the WSE 3.0 functionality.

When WSE 3.0 is enabled using the WSE 3.0 Settings tool, any proxy classes created will actually be
added as two proxies. The standard proxy that inherits from System.Web.Services.Protocols.
SoapHttpClientProtocol and a WSE 3.0 enabled proxy, its name suffixed with Wse, which inherits
from Microsoft.Web.Services3.WebServicesClientProtocol.

Manual WSE 3.0 Configuration
If you’re not using Visual Studio 2005, you’ll need to make the configuration and code changes that are no
longer automatically made.

Edit the Web Service Proxy Class to Derive From the WebServiceClientProtocol Class
When using Visual Studio 2005 in conjunction with WSE 3.0, as we have so far, the configuration required
to use WSE 3.0 is handled automatically. In addition, you also saw how Visual Studio 2005 also builds a
WSE enabled proxy in the client application in addition to the standard proxy.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

To enable a proxy to use WSE 3.0, you need to change the proxy class for the Web Service to use the
standard proxy that inherits from Microsoft.Web.Services3.WebServicesClientProtocol
instead of System.Web.Services.Protocols.SoapHttpClientProtocol.

You’ll need to make this change every time you update the reference to the Web Service.

Add a <configSections> Element to add the <microsoft.web.services3> Section to a
Configuration File
All configuration options for WSE 3.0 are stored in either the web.config or app.config files in a <mi-
crosoft.web.services3> custom section. You need to add this element to the configuration file by
adding an entry to the <configSections> element:

<configuration>

 <configSections>

 <section name=”microsoft.web.services3”

 type=”Microsoft.Web.Services3.Configuration.WebServicesConfiguration,

 Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35” />

 </configSections>

</configuration>

You can now make use of the <microsoft.web.services3> section to add configuration settings
specific to the various WSE 3.0 features.

Add a <soapExtensionTypes> Element under the <webService> Element in
a Configuration File
The power of WSE 3.0 lies in the use of SOAP extensions. In addition to adding SOAP Extensions program-
matically using a class derived from the SoapExtensionAttribute class, we can also add SOAP
Extensions declaratively in the configuration file.

SOAP Extensions are added to the <soapExtensionTypes> element of <webServices> as follows:

<configuration>

 <webServices>

 <soapExtensionTypes />

 </webServices>

</configuration>

Within the <soapExtensionTypes> element you can use the <add>, <clear>, and <remove> ele-
ments to change the SOAP Extensions that are currently enabled.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Adding SOAP Extensions is accomplished using the <add> element and specifying the following attri-
butes, all of which are required:

Attribute Description

Type Specifies the fully qualified type of the SOAP Extension to add. If the SOAP Extension is
in the GAC, it must include the version, culture and public key of the assembly contain-
ing the SOAP Extension.

Group Used with Priority to specify the ordering that the SOAP Extensions are applied.
This can be either 0 or 1 with a value of zero having the highest priority.

Priority Used with Group to specify the ordering that the SOAP Extensions are applied. Any
integer value is allowed with lower values having a higher priority.

Accessing the WSE 3.0 Facilities
When accessing the facilities of WSE 3.0, you make use of an instance of the Microsoft.Web.Servic-
es3.SoapContext object. This object contains various properties such as, Addressing, Envelope
and Security, which allow access to the individual WSE 3.0 facilities.

On the client, there is an instance of this object for both the request and response to the Web Service
method. These are available from the proxy class using the RequestSoapContext and
ResponseSoapContext properties.

As there are no changes made to the base class of the Web Service, there aren’t any properties directly de-
fined allowing access to the SOAP Context. Instead, you need to make use of the static Current property
of the RequestSoapContext and ResponseSoapContext classes. This will return the correct SOAP
Context instance.

The WSE 3.0 Message Pipeline
You saw earlier that you can use SOAP Extensions to alter the Stream containing the message to and
from the Web Service method. This is quite cumbersome and dealing with streams is never the
most pleasant experience.

WSE 3.0 adds a further means of altering the message but this time working with a Microsoft.Web.
Services3.SoapEnvelope class. This is accomplished by adding an input and output pipeline that
the message is passed through.

The pipeline contains a series of filters derived from the SoapFilter class in the Microsoft.Web.
Services3 namespace. Both the client calling the Web Service and the Web Service itself make use of
the input and output pipelines, as shown in Figure 5-3.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Figure 5-3 – The WSE 3.0 Message Pipeline

On making a request to a Web Service method, the outgoing message is passed through the defined out-
put filters and then passed through any defined SOAP Extensions (the BeforeSerialize and After-
Serialize stages). The message is then transmitted to the Web Service. On arriving at the Web Service,
the message is passed through any defined SOAP Extensions (the BeforeDeserialize and After-
Deserialize stages) before it is passed to the input pipeline and any defined input filters.

On execution of the Web Service method, the process is repeated when the message to is returned — the
message is passed through any defined output filters before any SOAP Extensions handle the message
(the BeforeSerialize and AfterSerialize stages). The message is then returned to the client
where it is passed through any defined SOAP Extensions (the BeforeDeserialize and AfterDese-
rialize stages) before being passed to the input pipeline and any defined input filters.

In previous versions of WSE, you had manual access to the input and output pipelines and you were free
to add filters manually to the pipelines. WSE 3.0 changed this and filters can only be added by the
use of policy assertions.

Implement a Policy for a Web Service Application
WSE 3.0 implements the WS-Policy specification and allows its various features to be configured in code
or declaratively in configuration files. Policy is mainly concerned with the security requirements of your
Web Service and Microsoft has several “turnkey security assertions” already defined. However, you can use
policy assertions to configure any custom requirements of your Web Service that are outside of the
scope of WSE 3.0.

A WSE 3.0 policy describes the requirements for calling your Web Service. The policy is declared in a policy
file and configured and compiled before any communication takes place and effectively sits as a SOAP
Filter in the WSE 3.0 Message Pipeline. The policy requirements are then applied in the client application
and enforced at the Web Service.

You should always use a policy to configure the requirements of your Web Service. Not only does this
separate any configuration requirements from the business logic of your Web Service, it also allows the
configuration to be changed without re-compiling the Web Service.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create a Policy File Manually
A WSE policy file is simply an XML file that contains the details of the policy assertions that are to be
added to the WSE pipeline. The simplest policy file contains no assertions at all:

<policies xmlns=”http://schemas.microsoft.com/wse/2005/06/policy”>

</policies>

Within the <policies> element, you then define the policy assertions that you want to use with the
<extensions> element. Finally, you configure those assertions in the <policy> element.

Each policy assertion that you wish to use is defined as an <extension> element (as a child of the <ex-
tensions> element). There are quite a few turnkey security assertions already defined. You may also
define a custom policy assertion by deriving from either the PolicyAssertion or SecurityPoli-
cyAssertion classes (both in the Microsoft.Web.Services3.Design namespace). We’ll look at
the turnkey security assertions and creating custom policy assertions shortly.

Policy assertions are then grouped into a policy defined as a <policy> element, identified by the name
attribute. A policy file can contain multiple policies, each defined in their own <policy> element. The
<policy> element configures the policy assertions to be used by making use of the policy extensions
defined in the <extensions> element and providing the configuration for each policy extension.

Creating a policy file by hand is very tedious and it can be accomplished much easier using the WseCon-
figEditor3 tool. However the WseConfigEditor3 is geared towards the turnkey security assertions that are
defined as part of WSE 3.0. In other words, if you want to make use of custom policy assertions, you’ll need
to manually configure the policy file.

Create a Policy File Using the WseConfigEditor3 Tool
The WseConfigEditor3 tool is a graphical tool, which can be executed in Visual Studio 2005 (VS 2005) or
externally, for creating a policy file automatically. Within VS2005, it can be accessed from the context
menu for a WSE3.0 enabled project by selecting the WSE Settings 3.0 option or by running WseConfigEdi-
tor3.exe from the tools folder of the WSE 3.0 installation folder.

Within WseConfigEditor3, clicking the “Policy” tab and selecting the “Enable Policy” option will allow you
to add policies to the application. You can either browse to an existing policy file (by clicking the “Browse”
button) or you can add a new policy file by clicking the “Add” button.

The WseConfigEditor3 tool only allows you to configure policies using the turnkey security assertions that
are defined by WSE 3.0. This is immediately obvious from the first screen of the wizard that is loaded when
clicking the “Add” button. From the wizard, you can configure the type of authentication (Anonymous,
Username, Certificate or Windows) as well as any authorization rules that you wish to apply. You also have
the option of configuring the integrity and confidentiality requirements for the communication.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The simplest direction you can take through the wizard is to elect to secure a “service application” using
Username authentication or no authentication and to disable the WS-Security 1.1 Extensions. This will
give you a very basic policy file as follows:

<policies xmlns=”http://schemas.microsoft.com/wse/2005/06/policy”>

 <extensions>

 <extension name=”usernameOverTransportSecurity”

 type=”Microsoft.Web.Services3.Design.UsernameOverTransportAssertion,

 Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35” />

 <extension name=”requireActionHeader”

 type=”Microsoft.Web.Services3.Design.RequireActionHeaderAssertion,

 Microsoft.Web.Services3, Version=3.0.0.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35” />

 </extensions>

 <policy name=”examplePolicy”>

 <usernameOverTransportSecurity />

 <requireActionHeader />

 </policy>

</policies>

You can see that we’ve added two policy assertions in the <extensions> element (UsernameOver-
TransportAssertion and RequireActionHeaderAssertion). The fully qualified type of the
assertion is specified in the type attribute and the name specifies the name of the policy assertion’s
configuration under the <policy> element.

The policy assertion, which is named using the name attribute of the <policy> element, then specifies
the configuration of the two policy assertions. Each extension (identified by its name attribute) has its
own XML configuration specified under the <policy> element.

Configure a Policy File in a Configuration File
Once the policy file has been created, it needs to be added to web.config or app.config in order for it
to be used. This is accomplished by adding the configuration file details to the <policy> element of the
WSE 3.0 configuration section, as follows:

<microsoft.web.services3>

 <policy filename=” wse3policyCache.config”/>

</microsoft.web.services3>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Applying a Policy to a Web Service
You can configure a Web Service to use a policy in two ways — declaratively or programmatically.

Declaratively Apply a Policy to a Web Service
To apply a defined policy to a Web Service, you make use of the Policy attribute to decorate the Web
Service definition with the name of the policy to use. If we use the policy that we declared earlier, ex-
amplePolicy, we can apply this to our Web Service as follows:

<Policy(“examplePolicy”)>

public class ExampleService : System.Web.Services.WebService

You can then change the policy by modifying the policy file; any changes will be automatically applied to
your Web Service, without requiring any changes to the code.

Programmatically Apply a Policy to a Web Service
It is also possible to apply a policy to a Web Service without using a policy file, by manually creating a
policy in code.

To apply a policy, you need to create a class derived from the Policy class in the Microsoft.Web.
Services3.Design namespace. Then, add a constructor that creates the necessary policy assertions
and adds them to the Assertions collection:

public class ExamplePolicy : Microsoft.Web.Services3.Policy

{

 public ExamplePolicy()

 {

 // create any assertions you need

 // add the assertions to the policy

 this.Assertions.Add(myPolicyAssertion);

 }

}

We can then apply the coded policy to the Web Service by making using of the Policy attribute:

<Policy(typeof(ExamplePolicy))>

public class ExampleService : System.Web.Services.WebService

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Add a Policy to a Client Application
As with Web Services, you can also configure a Client Application declaratively or programmatically.

Declaratively Apply a Policy to a Client Application
To add a policy to calls to a Web Service, you need to call the SetPolicy() method of the Web Service
proxy, specifying the name of the policy to add:

// create the proxy object

ExampleService myProxy = new ExampleService();

// apply the correct policy

myProxy.SetPolicy(“examplePolicy”);

// call the proxy methods

Programmatically Apply a Policy to a Client Application
Adding a policy to be used by a client application is very similar to adding a policy to the Web Service.
You will need to create a class derived from the Policy class in the Microsoft.Web.Services3.
Design namespace. Then, add a constructor that creates the necessary policy assertions and adds them
to the Assertions collection:

public class ExamplePolicy : Microsoft.Web.Services3.Policy

{

 public ExamplePolicy()

 {

 // create any assertions you need

 // add the assertions to the policy

 this.Assertions.Add(myPolicyAssertion);

 }

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You can then add the policy to the calls to the Web Service by creating an instance of the proxy and add-
ing any necessary security tokens (by calling the SetClientCredential and SetServiceCreden-
tial methods) before adding the policy to the proxy:

// create the proxy object

ExampleService myProxy = new ExampleService();

// add the required security credentials

myProxy.SetClientCredential(myClientCredential);

myProxy.SetServiceCredential(myServiceCredential);

// apply the correct policy

ExamplePolicy myPolicy = new ExamplePolicy();

myProxy.SetPolicy(myPolicy);

// call the proxy methods

The one extra piece of the process is the addition of the required security credentials to the message. All
security credentials are derived from the SecurityToken class in the Microsoft.Web.Servic-
es3.Security.Tokens namespace.

Security Tokens
There are three objectives when securing web services:

 n Authentication – ensuring that the sender of the message is who they say they are.

 n Integrity – ensuring that a message has not been tampered with during its transmission.

 n Confidentiality – ensuring that the message can only be viewed by authorized parties.

In order to authenticate the sender of a message, you need to add security credentials corresponding
to the sender. These security credentials can also be used to ensure the integrity and confidentiality of
the message.

WSE 3.0 supports all of the security credentials defined in the WS-Security 1.1 specification. These security
credentials are represented by security tokens, derived from the SecurityToken class in the Micro-
soft.Web.Services3.Security.Tokens namespace. Some of the more common security tokens
are as follows:

 n UsernameToken

 n KerberosToken

 n X509SecurityToken

In addition, there is also an abstract BinarySecurityToken class that you can inherit from to imple-
ment custom security tokens.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The Turnkey Security Assertions
As mentioned previously, policy is mainly concerned with security and, in particular, the details of the WS-
Security 1.1 specification. WS-Security 1.1 is an OASIS standard and more details can be found at
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss.

Rather than having to create your own policy assertions when using WSE 3.0, there are several turnkey
security assertions as can be seen at http://msdn2.microsoft.com/en-us/library/aa528756.aspx. These six
security assertions are summarized below:

 n AnonymousForCertificateAssertion – the client is not authenticated and the service is
authenticated using an X509 Certificate (an X509SecurityToken). The server’s X509 Certifi-
cate can be used to ensure the integrity and confidentiality of the message.

 n KerberosAssertion – the client and server are authenticated using Kerberos tickets (a
KerberosToken). The integrity and confidentiality of the message can be ensured using
Kerberos tokens.

 n MutualCertificate10Assertion – the client and server are authenticated using X509
Certificates. The integrity and confidentiality of the message can be ensured using the X509
Certificates. This assertion is compatible with WS-Security 1.0.

 n MutualCertificate11Assertion – the client and server are authenticated using X509
Certificates. The integrity and confidentiality of the message can be ensured using the X509
Certificates. This assertion is compatible with WS-Security 1.1.

 n UsernameOverTransportSecurity – the client is authenticated using a username and
password (a UsernameToken). The integrity and confidentiality of the message is not covered in
the assertion and is assumed to be provided by the underlying transport mechanism (e.g. HTTPS).

 n UsernameForCertificateAssertion – the client is authenticated using a username and
password and the server is authenticated using an X509 Certificate. The integrity and confiden-
tiality of the message can be ensured using the server’s X509 Certificate.

Create a Custom Policy Assertion
As we’ve already seen, there are several policy assertions already specified by the default WSE 3.0 installa-
tion and these should cover most of the situations that you will encounter. There may, however, be cases
where you need to create your own security assertions. The means to do this depends upon whether
you’re creating a security or non-security based policy assertion.

In either case, you need to define SoapFilter derived classes that you, using a class derived from
PolicyAssertion, return for each of the possible states of the WSE 3.0 Message Pipeline, as shown in
Figure 5-3. You return the correct filter by overriding methods of the PolicyAssertion class:

 n CreateClientOutputFilter – return the SoapFilter to be used for a request to a Web
Service method at the client.

 n CreateServiceInputFilter – return the SoapFilter to be used when a request to a
Web Service method is received at the server

 n CreateServiceOutputFilter – return the SoapFilter to be used at the server when a
Web Service method is complete.

 n CreateClientInputFilter – return the SoapFilter to be used at the client before the
response from the Web Service method is returned.

http://www.preplogic.com/products/video/view-video-training.aspx
http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wss
http://msdn2.microsoft.com/en-us/library/aa528756.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

If the policy assertion doesn’t add a filter for a particular place in the WSE 3.0 message pipeline, then you
don’t need to override that particular method; by default, a policy assertion doesn’t add any filters to the
WSE 3.0 pipeline.

The custom policy assertion can then be added to the policy file using the <extension> element. It is
also possible to add configuration of the policy assertion and you will need to override the GetExten-
sions and ReadXml methods of the PolicyAssertion class to read the configuration correctly.

Custom Non-Security Policy Assertions
To build a non-security policy assertion, you can follow the process outlined above directly. You need to
create a SoapFilter derived class for the required stages of the WSE 3.0 Message Pipeline, overriding
the ProcessMessage method to apply or enforce the policy assertion.

You then create the policy assertion itself by creating a class derived from PolicyAssertion, overrid-
ing CreateClientOutputFilter, CreateServiceInputFilter, CreateServiceOutput-
Filter and CreateClientInputFilter to return the correct filter.

The policy assertion can then be included in a policy file using the <extension> element and any con-
figuration defined underneath the <policy> element.

A very thorough example of creating a non-security policy assertion can be found on MSDN at
http://msdn2.microsoft.com/en-us/library/aa529313.aspx.

Custom Security Policy Assertions
Custom security policy assertions follow a similar principal to the non-security policy assertions, except
that the classes from which they are derived are different. Rather than deriving from the SoapFilter
and PolicyAssertion classes, you derive from slightly different classes — these classes already pro-
vide some of the building blocks required for security.

Instead of deriving from SoapFilter to create the filters to be added to the WSE 3.0 Message Pipeline,
you derive from a different class depending upon whether you’re creating the input or output filter:

 n For output filters, you derive from the SendSecurityFilter class, overriding the Se-
cureMessage method.

 n For input filters, you derive from the RecieveSecurityFilter class and override the
ValidateMessageSecurity method.

The policy assertion itself is also derived from a slightly different class. Instead of deriving from the
PolicyAssertion class, you derive from SecurityPolicyAssertion, overriding the necessary
methods to return the correct filter for the various stages in the WSE 3.0 Message Pipeline.

A very thorough example of creating a custom security policy assertion can be found on MSDN at
http://msdn2.microsoft.com/en-us/library/aa528788.aspx.

http://www.preplogic.com/products/video/view-video-training.aspx
http://msdn2.microsoft.com/en-us/library/aa529313.aspx
http://msdn2.microsoft.com/en-us/library/aa528788.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using the Custom Policy Assertion
You’ve already seen how to apply policy assertions to both the Web Service and a client application. A
custom policy assertion is no different than a turnkey security assertion and can be added in a policy file
(defined using an <extension> element) or in a custom policy by creating an instance of the policy
assertion in the Policy derived class.

Implement WSE SOAP Messaging
One of the key tenets of Service Orientated Architecture (SOA) is messaging; and messaging in WSE 3.0
has several major advantages over previous versions. WSE Messaging allows you to add additional capa-
bilities to your Web Services, such as changing the protocol used (such as to TCP from HTTP), specifying
one-way or bi-directional message and handling attachments.

When we look at WSE SOAP Messaging, we start to move away from Web Services and into the realms of
Service Oriented Architectures (SOA) and the Windows Communication Foundation. We’re moving from
Web Services to the more generic Services field.

To TCP or HTTP?
When using the HTTP protocol to communicate with a Web Service, you’re constrained to using IIS to
host your Web Service. There are instances when you may not want to use IIS and may want to host your
Web Service in an application (such as a console application or a Windows service). In these cases you
can change the protocol to TCP and, with a little bit of configuration, your application can receive those
messages. WSE 3.0 allows the easy use of TCP instead of HTTP by specifying the address as a soap.tcp://
address rather than an http:// address.

For example, to connect to the local machine using TCP you’d use the following address:

soap.tcp://localhost/

By default, this uses port 8081, which may not be available, and you can specify the correct port number, in
this case 1974, as follows:

soap.tcp://localhost:1974/

Implement One-way SOAP Messaging
One-way messaging is implemented in WSE 3.0 using the SoapSender and SoapReceiver classes in
the Microsoft.Web.Services3.Messaging namespace.

Send Messages
To send a one-way message, you need to create a SoapEnvelope to send and then send this to a config-
ured SoapSender instance.

Whether we’re sending across HTTP or TCP, we send the message the same way. The only difference is the
address to which we send the message. For HTTP, we’d specify the web address as:

string toAddress = “http://remoteServer/Receiver”;

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

And for TCP, we’d specify the address as follows:

string toAddress = “soap.tcp://remoteServer/Receiver”;

We first create the EndpointReference to send to and configure the SoapSender object:

EndpointReference myEndpoint = new EndpointRefernce(new Uri(toAddress));

SoapSender mySender = new SoapSender(myEndpoint);

We can then create a SoapEnvelope to send specifying the action and the content (the message)
for the envelope:

SoapEnvelope myEnvelope = new SoapEnvelope();

myEnvelope.Context.Address.Action = new Action(toAddress);

myEnvelope.SetBodyObject(“Message to send”);

We can then send the message by calling the Send method of the SoapSender object:

mySender.Send(myEnvelope);

Create a Class to Receive Messages
To receive messages, we need to create an instance of the SoapReceiver class and override the Re-
ceive method to handle the incoming messages:

namespace SoapReceivers

{

 public class MyReceiver : Microsoft.Web.Services3.Messaging.SoapReceiver

 {

 protected override void Receive (SoapEnvelope message)

 {

 // handle the incoming message

 }

 }

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Receiving the Message across HTTP
If receiving the message across HTTP, we can simply register an ASP.NET handler in IIS. The SoapReceiver
class implements the IHttpHandler interface so it can be used directly within the <httpHandlers>
section of web.config:

<httpHandlers>

 <add verb=”*” path=”Receiver.ashx”

 type=”SoapReceivers.MyReceiver” />

</httpHandlers>

Receiving the Message across TCP
To receive the message across TCP, we need to register the SoapReceiver object to receive mes-
sages for the required address. WSE 3.0 implements a static SoapReceivers class that has an Add
method we can call to register the receiver.

First, we create the correct EndpointReference for the SoapReceiver:

string toAddress = “soap.tcp://remoteServer/Receiver”;

EndpointReference myEndpoint = new EndpointRefernce(new Uri(toAddress));

And then we register the receiver:

SoapReceivers.Add(myEndpoint, typeof(SoapReceivers.MyReceiver));

Implement Bi-directional SOAP Messaging
Bi-directional messaging is implemented in a similar way to one-way messaging, except that you make
use of the SoapClient and SoapService classes.

These classes inherit from SoapSender and SoapReceiver that we’ve just looked at for one-way mes-
saging, so both these classes can be used to implement one-way and bi-directional messaging. To send,
create a class that derives from SoapClient and call its Send method to send the message and derive a
class from SoapService, overriding its Receive method to receive the messages.

The process for implementing bi-directional messaging is only slightly more complex.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create a Class to Send Messages
As the SoapClient class is abstract, we need to create an instance of it in order to send a message. We
must also configure the class, so we need to accept an instance of an EndpointReference in the con-
structor and pass this to the base class:

public class MyMessageSender : Microsoft.Web.Services3.Messaging.SoapClient

{

 public MyMessageSender (EndpointReference myDestination)

 : base (myDestination)

 {

 }

}

We could now, to send a one-way message, use this class as is and call the Send method passing in the
SoapEnvelope to send.

To add a bi-directional method, we need to define another method that we can use (or several methods if
we require them). There is no method to overload and we’re free to call the method whatever we want as
long as we mark the method using the SoapMethod attribute specifying the method to call in the Web
Service:

[SoapMethod(“MyRemoteMethod”)]

public SoapEnvelope RemoteMethodSend(SoapEnvelope message)

{

 return (base.SendRequestResponse(“MyRemoteMethod”, message);

}

Create a Class to Receive Messages
In order to receive bi-directional messages at the Web Service, we need to create a class derived
from SoapService:

public class MyMessageReceiver : Microsoft.Web.Services3.Messaging.
SoapService

{

}

If we want to handle one-way messages, we can override the Receive method in the same was as we
saw when we derived the class from SoapReceiver.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

To handle the bi-directional method, we need to create a new method and add the SoapMethod attri-
bute specifying the name of the method called:

[SoapMethod(“MyRemoteMethod”)]

public SoapEnvelope RemoteMethodReceive(SoapEnvelope message)

{

 return (base.SendRequestResponse(“MyRemoteMethod”, message);

}

The name specified in the SoapMethod attribute at the server must match the method name passed to the
SendRequestResponse method in the client. The actual names of the methods in the class are irrelevant
— it’s the SoapMethod attribute that determines which method in the server receives the message.

Configuring the Sender and Receiver
Configuring the sender and receiver for bi-directional messaging is exactly the same as for one-way
messaging. For the sender, pass the correct destination address to the constructor of the SoapClient
derived class; for the receiver, either register the HTTP handler or create an instance of the SoapService
derived class and add it to the SoapReceivers collection.

Adding Attachments to Method Calls
Previous versions of WSE used Direct Internet Message Encapsulation (DIME) to handle attachments for
Web Services. In WSE 3.0, attachments are handled using the SOAP Message Transmission Optimization
Mechanism (MTOM) specification (http://www.w3.org/TR/soap12-mtom/).

When enabling a Web Service or client application for WSE 3.0, you automatically enable the handling
of MTOM encoded messages. However, the default configuration settings will allow you to receive and
handle MTOM encoded messages at a Web Service but not to send MTOM encoded messages from a
client application.

From the Messaging tab of the WSE 3.0 Configuration tool, you have two main options that determine
now MTOM is handled.

 n Client Mode – defaults to off and determines whether requests to Web Service methods will be
MTOM encoded if required. A value of on will allow attachments to be added to the request to
the Web Service.

 n Server Mode – defaults to optional and determines whether the response from the Web
Service is MTOM encoded, with optional indicating that the response will match the request
(it will be MTOM encoded if the request was MTOM encoded). A value of always indicates that
the response will always be MTOM encoded and a value of never indicates that the response
will never be MTOM encoded.

It is also possible to set these values directly in web.config as the clientMode and serverMode attri-
butes of the <mtom> element of the <messaging> element in the <microsoft.web.services3>
configuration section. Note, however, that the default values don’t appear in web.config — it’s only if
you pick values that are non-default that you’ll get a corresponding entry in web.config.

http://www.preplogic.com/products/video/view-video-training.aspx
http://www.w3.org/TR/soap12-mtom/

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Handling Attachments
Attachments in WSE 3.0 are considered to be an array of bytes. We can pass a byte array as a parameter
to a Web Service method from a client application and we can return a byte array from a Web Service
method to the client application.

We can define a Web Service method that accepts a byte array as a parameter:

public int UploadImage(byte[] myFile)

Or, we can return a byte array from the Web Service method:

public byte[] RetreiveImage(int intImageID)

In either case, the byte array (the attachment) will be MTOM encoded and transmitted as part of
the SOAP message.

Note, however, that as it’s a byte array that we’re transmitting there is no way to determine the type of the
attachment from the byte array. We can’t even retrieve the name of the file that we’re transmitting. For
these purposes, you will have to implement an alternative mechanism for returning any other information
about the attachment.

Sending Attachments
If we’re dealing with files, and this will be the most common type of attachment we will use, we can use
some of the static members of the File class in the System.IO namespace to very easily read the
entire contents of the file into a byte array:

byte[] myFile = System.IO.File.ReadAllBytes(@“C:\image.jpg”);

We can then pass this to a Web Service method by adding it as a parameter to the Web Service method or
returning it from a Web Service method.

Receiving Attachments
When receiving an attachment, we can use static members of the System.IO.File class to save the
file to disk. Assuming that myFile is a byte array, we can use the WriteAllBytes method to save the
file to disk:

System.IO.File.WriteAllBytes(@”C:\image.jpg”, myFile);

However, as we’ve already seen, we have no way of returning the filename along with the byte array and
you will need to return it using some alternative mechanism.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Route SOAP Messages Using a WSE Router
SOAP Routing allows you to route requests for the methods in one Web Service to another Web Service.
This is for use in situations where your Web Service resides on a private network and you don’t want to
expose the network to the Internet. Routing also allows you to hide the internal implementation of your
network and, through simple configuration changes, allow you to route requests to an alternative server
— ideal if you need to perform maintenance on a particular server.

Create a WSE Router Application
A WSE Router is a class that inherits from the SoapHttpRouter class in the Microsoft.Web.Ser-
vices3.Messaging namespace. This is an HTTP Handler that sits and processes incoming requests to
determine where the request is to be redirected to.

To enable this processing you need to override the ProcessRequestMessage method, perform the
necessary processing and return the Uri for the message to be routed to:

namespace SoapRouters

{

 public class ContentRouter

 : Microsoft.Web.Services3.Messaging.SoapHttpRouter

 {

 protected override Uri ProcessRequestMessage

 (Microsoft.Web.Services3.SoapEnvelope message)

 {

 // implement routing rules

 }

 }

}

When we override the ProcessRequestMessage method, we provide custom rules for routing. This is
known as content-based routing as it is the content of the actual message that determines the routing of
the message.

Once you’ve created your derived SoapHttpRouter, you then need to configure ASP.NET to handle
requests for a specific Web Service in the <httpHandlers> element of web.config:

<httpHandlers>

 <add verb=”*” path=”RoutedService.asmx”

 type=”SoapRouters.ContentRouter, ContentRouter” />

</httpHandlers>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configure a Referral Cache for Routing
If you don’t want to perform content based routing, it is necessary to create a referral cache that you can
use to perform all the necessary routing. The default behavior of the SoapHttpRouter is to use a refer-
ral cache to perform the routing and it is only by overriding the ProcessRequestMessage method
that we override this behavior.

We can then easily add a referral cache based WSE Router by using the standard SoapHttpRouter
class to handle all requests for Web Services in your application. This can be configured very easily in the
<httpHandlers> section of web.config:

<httpHandlers>

 <add verb=”*” path=”*.asmx”

 type=”Microsoft.Web.Services3.Messaging.SoapHttpRouter,

 Microsoft.Web.Services3, Version-3.0.0.0, Culture=neutral,

 PublicKeyToken=31bf3856ad364e35” />

</httpHandlers>

All requests to Web Services will now be passed to the SoapHttpRouter class that, by default, looks for
a referral cache file to determine where requests are handled. This is specified in the <referrals> ele-
ment of <microsoft.web.services3> in web.config:

<microsoft.web.services3>

 <referrals>

 <cache name=”referralCache.config” />

 </referrals>

</microsoft.web.services3>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The Referral Cache File
The referral cache file is used for each request that the SoapHttpRouter receives to determine the
routing instructions for the request. Within the referral cache, there must be a routing instruction for
every possible request that the WSE router is expected to handle. If there isn’t a routing instruction for a
received request, a SOAP Fault is sent back to the caller.

An example referral cache file is given below:

<?xml version=”1.0” encoding=”utf-8” ?>

<r:referrals xmlns:r=”http://schemas.xmlsoap.org/ws/2001/10/referral”>

 <r:ref>

 <r:for>

 <r:exact>http://localhost/ServiceA.asmx</r:exact>

 </r:for>

 <r:if/>

 <r:go>

 <r:via>http://localhost/ServiceB.asmx</r:via>

 </r:go>

 </r:ref>

</r:referrals>

As you can see, the file is quite simple. The <r:ref> element is used to hold routing instructions for a
destination Web Service and the referral cache file can contain as many <r:ref> elements as required.

Within the <r:ref> element, there is always a <r:for> element that is used to determine which Web
Services the routing instruction is for. The <r:for> element contains one of the following elements:

 n <r:exact> - matches to an exact request URL

 n <r:prefix> - matches the start of a request URL

The <r:if> element can be used to specify any conditional decisions that need to be made before the
request can be routed.

The <r:go> element that is used to specify where the request is to be routed. There can be multiple <r:
via> elements within the <r:go> element and each of these specifies a destination to be routed to. If
there are multiple <r:via> elements, the selection of which <r:via> element to use is non-determin-
istic and one of the entries will be picked at random.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Applying a Policy to Incoming Requests
We saw earlier how to apply policy assertions to a Web Service using the Policy attribute. When we’re
using a WSE Router, we no longer have a direct connection to the Web Service and instead need to apply
the policy assertion to the WSE Router.

 We can’t do this for a WSE Router using the Policy attribute; instead, we need to override the GetRe-
questPolicy() method in the SoapHttpRouter derived class to return an instance of
the correct policy.

Assuming we’re using the ExamplePolicy policy that we defined earlier, we can apply this to the WSE
Router by content based router overriding the GetRequestPolicy() method as follows:

namespace SoapRouters

{

 public class ContentRouter

 : Microsoft.Web.Services3.Messaging.SoapHttpRouter

 {

 protected override Uri ProcessRequestMessage

 (Microsoft.Web.Services3.SoapEnvelope message)

 {

 // implement routing rules

 }

 protected override Microsoft.Web.Services3.Design.Policy
 GetRequestPolicy()

 {

 return new ExamplePolicy();

 }

 }

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

We can also add the same policy to a referral cache based WSE Router by deriving from the
SoapHttpRouter class and keeping the default ProcessRequestMessage behavior:

namespace SoapRouters

{

 public class ReferralRouter

 : Microsoft.Web.Services3.Messaging.SoapHttpRouter

 {

 protected override Microsoft.Web.Services3.Design.Policy
 GetRequestPolicy()

 {

 return new ExamplePolicy();

 }

 }

}

Creating and Access a Serviced
Component and Using Message Queuing
Create, Configure and Access a Serviced Component

Create a Serviced Component

There are several steps that must be completed to create a serviced component.

1. Add a reference to the System.EnterpriseServices namespace to your project.

2. Inherit from ServicedComponent and add a default constructor

 using System.EnterpriseServices;

 public class myServicedComponent : ServicedComponent

 {

 public myServicedComponent()

 {

 }

 }

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

3. Make the class visible to COM+ by adding the ComVisible attribute to the class definition.
By default, all classes in an assembly are hidden from COM+ by the ComVisible(false)
applied to the assembly in AssemblyInfo.cs. You need to apply ComVisible(true) to
each class you want to make visible to COM+:

 using System.EnterpriseServices;

 using System.Runtime.InteropServices;

 [ComVisible(true)]

 public class myServicedComponent : ServicedComponent

 {

 public myServicedComponent()

 {

 }

 }

4. Specify how the components are activated by COM+. You can specify whether components are
activated in the calling client’s process (Library, the default setting) or whether the compo-
nent is activated in its own process (Server). You can specify the type you’re after by adding
the ApplicationActivation attribute to AssemblyInfo.cs:

 [assembly: ApplicationActivation(ActivationOption.Server)]

5. Give the assembly containing the serviced components a strong name. Without a strong name,
the assembly cannot be used by COM+.

Add Attributes to a Serviced Component
Most COM+ functionality is added to serviced components by using attributes. These attributes are
used by COM+ to configure the serviced component and the configuration is stored within COM+. At-
tributes specify the initial configuration for a serviced component but this can be modified using the
COM+ plugin for MMC.

There are over 20 attributes specified in the System.EnterpriseServices namespace that
can be applied to your class to control its interaction with COM+. We’ll only look at a few of them here.

Transactions
Adding the requirements for transactions to a serviced component is accomplished using the Trans-
action attribute. There are several properties that we can pass to the attribute when it is defined:

 n Isolation – the TransactionIsolationLevel enumeration allows you to set the
isolation level of the transaction: Chaos, ReadCommitted, ReadUncommitted, Repeat-
ableRead, Serializable, Snapshot, or Unspecified.

 n Timeout – the time, in seconds, that the transaction will be allowed to run before it is timed out
by the transaction coordinator.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Value – the TransactionOption enumeration allows you to determine how the serviced
component deals with transactions: Disabled, NotSupported, Required, RequiresNew,
or Supported.

Object Pooling
Using the ObjectPooling attribute you can specify that only a set number of objects can be created.
There are several properties that we can pass to the attribute when it is defined:

 n CreationTimeout – the time, in milliseconds, that a client application will wait for an object
to become available before it times out.

 n MaxPoolSize – the maximum number of objects that will ever exist in the pool.

 n MinPoolSize – the minimum number of objects that are contained in the pool. This specifies
how many are created on startup and how many are maintained in the pool.

Queued Components
In many cases, it will be necessary to use components that make use of Microsoft Message Queuing
(MSMQ). There are two attributes, InterfaceQueuing and ApplicationQueuing, which can be
used to instruct COM+ that your application makes use of MSMQ. We’ll look at both of these attributes in
more detail later.

Register a Serviced Component
Before you can use your component, it must be registered with COM+. There are several ways that you
can install serviced components. Two of these are by using the Microsoft Management Console or the
Services Installation Tool.

Microsoft Management Console
The Component Services snap in for MMC can be accessed from the Administrative Tools section of the
Control Panel. Expanding the Component Services -> Computers -> My Computer node allows you to
see the various objects of COM+. Expanding the COM+ Applications node allows you to view all of the
applications on the computer, as shown in Figure 6-1.

 Figure 6-1 – Components Services console

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You can add a new application to COM+ by selecting New -> Application from the context menu of the
COM+ Applications node. Once you’ve created the application, you can drag and drop the assemblies
containing the services components into the application’s Components folder.

Services Installation Tool
The .NET SDK provides an installation tool, regsvcs,exe, that you can use to register an
assembly with COM+.

From the command line, you specify the name of the assembly and the application name:

regsvcs MyAssembly.dll MyComApplication

This will create a COM+ application called MyComApplication and add the serviced components from
then MyAssembly.dll assembly to the application.

Implement Security
If you extend a COM+ application in MMC, you’ll see that there are three “folders” contained within the
application. Two of these, Components and Legacy Components, contain the serviced components for the
application. The third, Roles, is used to configure security of the COM+ application.

Roles, in COM+, are completely unrelated to Windows security and you must configure the roles within
COM+ to contain users and groups from the Windows security model. These can then be used within your
serviced component by making use of several other attributes:

 n ApplicationAccessControl – this attribute is applied to the assembly containing your
serviced components. Passing true to the attribute enables roles based security for all the
serviced components in the assembly.

 n ComponentAccessControl – this attribute is applied to each serviced component. Passing
true to the attribute enables role based security for the serviced component.

 n SecurityRole – this attribute is also added to the serviced component and takes at least one
parameter — the name of the role to associate with the serviced component (the role will be creat-
ed within COM+ if it doesn’t already exist). You can also pass a Boolean, optional second parameter
that specifies whether the Everyone Windows security group is added to the role in COM+.

Within your application, you can then make use of roles by using the properties and methods of the Con-
textUtil class:

 n IsSecurityEnabled – this property returns true if role-based security has been enabled
for the current serviced component.

 n IsCallerInRole (“role”) – this method returns true if the caller is in the specified role.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using a Serviced Component
Using a serviced component that is registered with COM+ is no different to using a component that isn’t:

 n Register the component as you would any other component. In Visual Studio, select Add Refer-
ence from the project’s content menu or from the main Project menu.

 n Create an instance of the serviced component using the new keyword.

 n Access the properties and methods of the serviced component.

As you can see, there is no change to the way that you reference, instantiate and access the service com-
ponent. Deriving from the ServicedComponent class, and using the attributes from the System.
EnterpriseServices namespace, shields you from all the complexities of COM+.

Create, Delete and Set Permissions on a Message Queue
Message queuing allows you to send messages to an application and, even if the application isn’t running,
expect those messages to be delivered. Microsoft Message Queuing (MSMQ) acts almost like a postal
system, in that it accepts messages for delivery and ensures that the messages are delivered.
MSMQ defines two types of queue:

 n Public – a public queue is registered in Active Directory and can be discovered by browsing the
network. Public queues are named as MachineName\QueueName.

 n Private – a private queue has exactly the same functionality as a public queue except that it isn’t
discoverable through Active Directory. Private queues are named as MachineName\Pri-
vate$\QueueName.

In addition to the public and private queues that you may define for your applications, there are two other
queues that may be available: journal queues and dead-letter queues.

Queues can also be marked as transactional. Making use of the queue will cause the transaction coordina-
tor to manage the distributed transaction. You can then interact with previous stages of the transaction
ensuring that any transactional business logic in your application is handled correctly.

Create a Message Queue Manually
To manually create a message queue, you need to launch the Computer Management console from the
Administrative Tools section of the Control Panel. Expanding the Message Queuing node under Services
and Applications allows you to view all the message queues on the computer, as shown in Figure 6-2.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Figure 6-2 – Message Queuing in the Computer Management console

You can create a new private queue by clicking on the Private Queues node and selecting New -> Private
from the context menu. From the wizard, you can specify the name of the message queue and whether
you want the queue to be transactional.

Create a Message Queue Programmatically
All of the functionality for queuing is contained in the System.Messaging namespace and there are
two static methods of the MessageQueue class that you’ll use to create a new message queue:

 n MessageQueue.Exists(“queuename”) – returns true if the queue already exists and
you can access the queue by simply creating a new instance of the MessageQueue class and
specifying the name of the queue to the constructor. If it returns false, then you may need to
create the message queue before you can use it.

 n MessageQueue.Create(“queuename”) – creates a non-transactional message queue
with the specified name and returns the queue for immediate use. An overloaded Create
method accepts a Boolean second parameter that indicates whether the queue is to be transac-
tional or not.

Delete a Message Queue
You can delete a message queue in two ways:

 n Select the queue in the Computer Management console and select Delete from the queue’s
context menu.

 n Call the static MessageQueue.Delete method passing the name of the queue you want
to delete.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Set Permissions for a Message Queue
By default everyone (the Everyone Windows security group) has full access to message queues. You can
set the permissions for a message queue in the Computer Management console by selecting the Proper-
ties option from the queue’s context menu. The Security tab allows you to specify permissions for the
queue based on Windows security users, groups and computers.

It is also possible to set permissions on a message queue programmatically by using the SetPermis-
sions method of the queue itself:

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

myQueue.SetPermissions(“BUILTIN\Administrators”,

 MessageQueueAccessRights.FullControl);

Here, we’ve granted the BUILTIN\Administrators group full control on the queue. There are several values
in the MessageQueueAccessRights enumeration that allow you to define very granular permissions
on the queue.

It is also possible to reset the permissions on the queue to their default values (the Everyone Windows
security group having full control) by calling the ResetPermissions method of the queue.

Sending and Receiving Messages to a Message Queue and
Delete Messages from a Message Queue

Create a Message
To add a message to a message queue, you create an instance of the Message class in the System.
Messaging namespace and configure various properties before posting the message to the queue.

There are over 50 properties that can be set for a Message but the ones that you’ll most likely come across
are as follows:

 n Body – an Object representing the message that is being sent via the queue.

 n Label – a label for the message that can be used for several purposes. You can, perhaps, think
of it as a title or name of the message.

 n Priority – a member of the MessagePriority enumeration indicating the relative prior-
ity of the message.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Send a Message
Once you’ve created the Message that you wish to send, you can add it to the message queue by calling
the Send method of the MessageQueue instance:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// create and configure the message

Message myMessage = new Message();

myMessage.Body = “This is a test message”;

myMessage.Label = “Message test”;

myMessage.Priority = MessagePriority.Normal;

// send the message

myQueue.Send(myMessage);

In addition to sending an instance of a Message object to a MessageQueue, it is also possible to send
any serializable object using the Send method. Passing any Object other than a Message to the Send
method internally creates a new Message and places the passed in Object as the Body of the message.
It is also possible to set the Label of a message passed in this way by using an overloaded version of the
Send method passing the required Label as the second parameter to the Send method.

Receive a Message
Once you’ve sent a message to the message queue, you must then retrieve the message from the queue. All
queue actions are asynchronous. In other words, you send a message to the queue and there is no require-
ment for the receiver of the queue to be running at the time the message is sent. And, if the receiver isn’t
running when the message is sent, it will be queued until the receiver asks for the message from the queue.

Messages are received from the queue using the Receive method of the MessageQueue object.

This method blocks until a message is received and returns a Message object corresponding identical to
the message that was sent to the queue:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// receive the message

Message myMessage = myQueue.Receive();

// process the message

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

A blocking method that waits forever is not particularly usable and it is possible to specify that the Re-
ceive method return after a given period of time:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

try

{

 // receive the message

 Message myMessage = myQueue.Receive(new TimeSpan(0,1,0);

 // process the message

}

catch (MessageQueueException ex)

{

 if (ex.MessageQueueErrorCode == MessageQueueErrorCode.IOTimeout)

 {

 // no message in queue

 }

}

In this example, we wait 1 minute for a message to appear in the queue. If there is already a message in
the queue, or one is added to the queue during that time, the Receive method returns immediately and
returns the Message instance. If there is no message received during the specified TimeSpan, the Re-
ceive method will throw a MessageQueueException with the error code specified as IOTimeout.

Decide Which Formatter to Use
When sending messages, the message is, by default, formatted using the XmlMessageFormatter from
the System.Messaging namespace. There are three formatters, all implementing the IMessageFor-
matter interface:

 n ActiveXMessageFormatter – serializes the Message to a stream.

 n BinaryMessageFormatter – serializes the Message in binary format.

 n XmlMessageFormatter – serializes the Message as XML.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

In order to use a formatter other than XmlMessageFormatter, or if you want to do the formatting your-
self using the XmlMessageFormatter, you must create an instance of the formatter you require and call
its Write method to format the message correctly. Assuming we have an Object called myObject that
contains an arbitrary class, we can format this using the BinaryMessageFormatter as follows:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// create and configure the message

Message myMessage = new Message();

myMessage.Label = “Message test”;

myMessage.Priority = MessagePriority.Normal;

// create the correct formatter and format the object

BinaryMessageFormatter myFormatter = new BinaryMessageFormatter();

myFormatter.Write(myMessage, myObject);

// send the message

myQueue.Send(myMessage);

As you’ve formatted the Message when sending, you must un-format the Message when receiving. You
can no longer directly use the Body property of the Message; instead, must use the Read method of
the same formatter to retrieve the object correctly. So, to retrieve the Object we’ve just sent using the
BinaryMessageFormatter, we’d have to do the following:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// receive the message

Message myMessage = myQueue.Receive();

// create the correct formatter and un-format the object

BinaryMessageFormatter myFormatter = new BinaryMessageFormatter();

Object myObject = myFormatter.Read(myMessage);

Delete Queued Messages
It is not possible to delete queued messages from a queue. There is no Delete method on the Mes-
sageQueue class. Once a message is retrieved from the queue using the Receive method, it is deleted
from the queue.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Handle Acknowledgements
Using message queues is, by definition, asynchronous. If you want to have an acknowledgement that your
message has been delivered successfully, you need to make use of a second message queue and several
properties of the Message that you’re going to send.

When receiving acknowledgements, you need some way of knowing which message the acknowledge-
ment is for. This is accomplished by using the Id of the sent message and returning it as the Correla-
tionId of the acknowledgement Message.

Any acknowledgements that you wish to receive must be handled by a second queue. So, the first thing
the sender needs to do is create two message queues (we’ll assume that they’ve already been created):

// create the two message queues

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

MessageQueue myAckQueue = new MessageQueue(“.\private$\myAckQueue”);

We then need to create the Message we’re going to send:

// create and configure the message

Message myMessage = new Message();

myMessage.Body = “This is a test message”;

myMessage.Label = “Message test”;

myMessage.Priority = MessagePriority.Normal;

And, before we send the message, we must inform the Message that we’d like it to be acknowledged. In
this case, we’re only after an acknowledgement that it has been processed and removed from the queue.
We also specify that the acknowledgement will be sent on the acknowledgement queue, myAckQueue:

// configure the acknowledgement details

myMessage.AcknowledgeType = AcknowledgeTypes.PositiveReceive;

myMessage.AdministrationQueue = myAckQueue;

We can then send the message as we normally would:

// send the message and store the Id

myQueue.Send(myMessage);

string myMessageId = myMessage.Id;

We can then wait for the acknowledgement queue, myAckQueue, to return the acknowledgement for
the message we’ve just sent:

// wait for the acknowledgement message

Message myAckMessage = myAckQueue.ReceiveByCorrelationId(myMessageId);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

By using the ReceiveByCorrelationId method, we’re waiting for a specific message to be returned
(there is also an overloaded version that allows us to specify a TimeSpan that we wish to block for),
one that corresponds to the message we requested the acknowledgement for. We can check that this is
indeed the correct acknowledgment message by checking that the CorrelationId property matches
the id that we’re expecting and that it is the correct type by checking that the Acknowledgment prop-
erty is the correct value from the AcknowledgeTypes enumeration.

Acknowledgement of messages is handled automatically by MSMQ — the sender is completely respon-
sible for configuring the second queue for receiving the acknowledgement. The receiver of the message
is completely unaware that any acknowledgement of messages has occurred.

Peek at Messages
The Receive method that we saw earlier is used to return a Message from the queue and can be
configured to timeout if no message is received in the given TimeSpan. The Receive method actually
removes the message from the MessageQueue.

The MessageQueue also provides a Peek method that can be used to return the Message from the
queue but leave the message in the queue. Subsequent calls to the Peek method will (unless a higher
priority message is received) return the same Message object.

As with the Receive method, there is both a blocking and non-blocking version of Peek. If we don’t
specify a TimeSpan to the Peek method, it will block indefinitely:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// peek the message

Message myMessage = myQueue.Peek();

// process the message

We can also specify a TimeSpan that we’re prepared to wait for the Peek method to return before a
MessageQueueException is thrown:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

try

{

 // peek the message

 Message myMessage = myQueue.Peek(new TimeSpan(0,1,0);

 // process the message

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

catch (MessageQueueException ex)

{

 if (ex.MessageQueueErrorCode == MessageQueueErrorCode.IOTimeout)

 {

 // no message in queue

 }

}

Receive a Message Asynchronously
The two methods that we’ve looked at so far for retrieving messages from the message queue, Receive
and Peek, have both been synchronous — that is, we’ve made the request to the queue and blocked until
we’ve retrieved a Message or until we’ve timed out.

We can also wait for messages to appear message queues by using the BeginReceive/EndReceive
methods and ReceiveCompleted event or the corresponding Peek versions, BeginPeek/EndPeek
and PeekCompleted. In either case, the paradigm is exactly the same.

Use BeginReceive/EndReceive and ReceiveCompleted
In order to asynchronously receive a Message from the MessageQueue, we must first create a Re-
ceiveCompleted that will receive the asynchronous call. In here, we’ll use the AsyncResult to call
the corresponding EndReceive method to return the message that we can then process:

private static void myReceivedCompleted(object e,

 ReceiveCompletedEventArgs args)

{

 // connect to the queue (the first parameter)

 MessageQueue myQueue = (MessageQueue)e;

 // get the message (returns immed

 Message myMessage = myQueue.EndReceive(args.AsyncResult);

 // process the message

}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

We can then attach this event handler to our message queue and call the BeginReceive method to start
the event handling process:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// attach the message handler

myQueue.ReceiveCompleted += new ReceiveCompletedEventHandler(

 myReceiveCompleted);

// begin the event handling

myQueue.BeginReceive();

// do some other work

After calling the BeginReceive method, we’re free to continue execution of our application and the
myReceivedCompleted event will be fired every time a message is added to the queue.

Message Security
MSMQ provides two levels of security for messages:

 n Authentication – signing a message proves that the sender of the message is who they say they are.

 n Encryption – encrypting a message ensures that the communication between the sender and
the received is secure.

Signing a Message
Message authentication and, by definition, signing a message, is only possible if you’re using a computer
that is connected to an Active Directory domain. Active Directory is used to handle the certificates neces-
sary to authenticate users.

Signing a message can be performed using two different types of certificate:

 n Internal certificates are created automatically by MSMQ and are used to authenticate the Win-
dows user. The certificate is based upon the Windows security identifier (SID) of the user. You
can only use internal certificates if you’re connected to an Active Directory domain as the do-
main manages all of the users and SID for users is consistent across all machines in the domain.

 n External certificates are proved by an external certificate authority. You must use external cer-
tificates if you’re sending messages to non-Windows machines or if you’re not connected to an
Active Directory domain.

Message authentication is enabled by checking the Authenticated option from the General properties for
the message queue, as shown in Figure 6-3.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Figure 6-3 – Configuring security for a message queue.

When sending messages to a queue that requires authentication, any message that cannot be authenti-
cated, or fails authentication, is immediately discarded by the queue. It is never placed in the queue.

In order for a message to be authenticated, the certificate needs to be attached to the message. For an
internal certificate, this actually occurs automatically and the certificate of the user executing the current
thread is automatically attached to a message as the SenderId property. You can override this behav-
ior by setting the AttachSenderId property of the Message to false. If AttachSenderId is set to
false the message will still be authenticated correctly but the sender will be anonymous.

The only difference between using internal and external certificates to sign a message is the process of at-
taching the certificate to the message. When using an internal certificate, this occurs automatically using
the SenderId property, whereas with an external certificate you need to attach the certificate using the
SenderCertificate property.

When using an internal certificate, all that is required is to set two properties of the Message for the
message to be signed:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// create and configure (not shown) the message Message

myMessage = new Message();

// sign the message

myMessage.UseAuthentication = true;

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

// send the message

myQueue.Send(myMessage);

Because the SenderId is automatically entered (as AttachSenderId has a default value of true), all
you need to do is set the UseAuthentication property to true and the message will be authenti-
cated before it is added to the queue.

External certificates are a little trickier, as you need to create an instance of the certificate that you’re going
to use and attach that to the SenderCertificate property of the message before it is attached
to the queue:

// create an instance of the correct certificate

X509Certifcate2 myCertificate = new X509Certifcate2();

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// create and configure (not shown) the message

Message myMessage = new Message();

// sign the message and attach the certificate

myMessage.UseAuthentication = true;

myMessage.SenderCertificate = myCertificate.GetRawCertData();

// send the message

myQueue.Send(myMessage);

If you’re not attached to an Active Directory domain, in workgroup mode, you must set the AttachSen-
derId property to false — MSMQ cannot associated a SID with a certificate when running in work-
group mode.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Verify a Message
When running attached to an Active Directory domain, it isn’t necessary to check the authentication of a
message — the authentication of the message was checked as it was added to the queue. When running
in workgroup mode, however, you do need to check that the sender of the message, using the Sender-
Certificate property, is valid. You can retrieve the certificate from a message as follows:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// receive the message

Message myMessage = myQueue.Receive();

// create the certificate

X509Certifcate2 myCertificate = new ~CCC

 X509Certifcate2(myMessage.SenderCertificate);

You can then inspect the properties of the X509Certificate2 instance to determine if the certificate is
to be trusted.

Encrypt a Message
If attached to an Active Directory domain, encrypting a message is performed seamlessly by MSMQ with
very little external work required. If you look at Figure 6-3, you’ll see that there is a Privacy level drop down
box — this controls the encryption required for the message queue and can take one of three values:

 n None – the queue accepts only non-encrypted messages.

 n Body – the queue accepts only encrypted messages.

 n Optional – the queue will accept both encrypted and non-encrypted messages.

To encrypt a message, all that is required is to set the UseEncryption property for the message:

// create the message queue

MessageQueue myQueue = new MessageQueue(“.\private$\myQueue”);

// create and configure (not shown) the message Message

myMessage = new Message();

// encrypt the message

myMessage.UseEncryption = true;

// send the message

myQueue.Send(myMessage);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n .NET 2.0 - Distributed Application Development (70-529) 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The message will be automatically encrypted before it is sent to the message queue.

If you’re running in workgroup mode, there is no automatic encryption of messages. If you want to use en-
cryption, you must manually encrypt the body of the message before you send the message to the queue.

Decrypt a Message
Decryption of the message is handled automatically when connected to an Active Directory domain and
all messages retrieved from the queue are un-encrypted.

If you’re running in workgroup mode, and have manually encrypted the message, you’ll need to manually
de-encrypt the body of the message after it has been retrieved from the message queue.

http://www.preplogic.com/products/video/view-video-training.aspx

	Create and Configure an XML Web Service
	Create a Web Service
	The @WebService Directive
	Creating the Web Service Class
	Browsing the Web Service
	Changing the Namespace
	Using the Web Service

	Create Web Methods
	Create a OneWay Web Method

	Use Discovery Files to Publish a List of WebServices that are Installed on a Web Server
	Dynamically Discovering Web Services

	Configuring and Customizing a WebService Application
	Configure SOAP Messages
	Specify the Basic Information for a Web Service Application
	Configure the Formatting of SOAP Messages for a Web Service Method
	Configuring the Parameter Formatting and Style for the Web Service
	Configuring the Formatting for Methods of the Web Service

	Specify the Bindings of a Web Service Application by Using the WebServiceBinding Attribute
	Configure a Web Service Application by Using a Configuration File

	Manage Session State in Web Services
	Implement Session State by using the Application Object
	Implement Session State by using the Session Object
	Implement Session State by using Cookies

	Implement SOAP Headers
	Add a Custom SOAP Header Class
	Create a Public Instance of the Custom SOAP Header Class in a Web Service Class
	Apply a SoapHeader Attribute to a Web Method
	Add SOAP Headers to Web Service Calls
	Access and Process a SOAP Header in a Web Method
	Set the Direction of a SOAP Header
	Handle Unknown SOAP Headers

	Implement SOAP Extensions
	Create a Custom SOAP Extension
	Configure a SOAP Extension

	Creating, Configuring, and DeployingRemoting Applications
	Create and Configure a Server Application
	Create a Server Application Domain
	Configure a Server Application Programmatically
	Configuring Channels
	Configuring Remote Objects
	Versioning
	Changing the Channel Formatting

	Configure a Server Application using Configuration Files
	Configuring Channels
	Configuring Remote Objects
	Versioning
	Change the Channel Formatting

	Create a Client Application to Access a Remote Object
	Create a Remote Object
	Configure a Client Application Programmatically
	Configuring Channels
	Configuring Remote Objects

	Configure a Client Application using Configuration Files
	Configuring Channels
	Configuring Remote Objects

	Access the Remoting Service by Calling a Remote Method

	Debug and Deploy a Remoting Application
	Use Performance Counters to Monitor a Remoting Application
	Debug a Remoting Application
	Handling Exceptions
	Tracking Remoting

	Deploy a Remoting Application
	Deploying a Hosting Application
	Deploy a Client Application

	Manage the Lifetime of Remote Objects
	Initialize the Lifetime of a Remote Object
	Renew the Lifetime of a Remote Object

	Implementing Asynchronous Calls andRemoting Events
	Call Web Methods Asynchronously
	Call a Web Method
	Poll for the Completion of a Web Method
	Implement Callback
	Call a One-Way Web Method

	Call Remoting Methods Asynchronously
	Implement One-Way Methods by Using the OneWay Attribute
	Call a Remote Method Asynchronously
	Implement Callback

	Implement Events in Remoting Applications
	Create and Fire Events
	Passing the Event from the Remote Object to the Client
	Implement Event Handlers for the Events of Remote Objects

	Implementing Web Service Enhancements (WSE) 3.0
	Enable WSE in Client and Server Applications
	Add References to the WSE Assemblies
	WSE 3.0 Configuration under Visual Studio 2005
	Manual WSE 3.0 Configuration
	Edit the Web Service Proxy Class to Derive From the WebServiceClientProtocol Class
	Add a <configSections> Element to add the <microsoft.web.services3> Section to a Configuration File

	Add a <soapExtensionTypes> Element under the <webService> Element in a Configuration File

	Accessing the WSE 3.0 Facilities
	The WSE 3.0 Message Pipeline

	Implement a Policy for a Web Service Application
	Create a Policy File Manually
	Create a Policy File Using the WseConfigEditor3 Tool
	Configure a Policy File in a Configuration File
	Applying a Policy to a Web Service
	Declaratively Apply a Policy to a Web Service
	Programmatically Apply a Policy to a Web Service

	Add a Policy to a Client Application
	Declaratively Apply a Policy to a Client Application
	Programmatically Apply a Policy to a Client Application

	Security Tokens
	The Turnkey Security Assertions
	Create a Custom Policy Assertion
	Custom Non-Security Policy Assertions
	Custom Security Policy Assertions
	Using the Custom Policy Assertion

	Implement WSE SOAP Messaging
	To TCP or HTTP?
	Implement One-way SOAP Messaging
	Send Messages
	Create a Class to Receive Messages
	Receiving the Message across HTTP
	Receiving the Message across TCP

	Implement Bi-directional SOAP Messaging
	Create a Class to Send Messages
	Create a Class to Receive Messages
	Configuring the Sender and Receiver

	Adding Attachments to Method Calls
	Handling Attachments
	Sending Attachments
	Receiving Attachments

	Route SOAP Messages Using a WSE Router
	Create a WSE Router Application
	Configure a Referral Cache for Routing
	The Referral Cache File

	Applying a Policy to Incoming Requests

	Creating and Access a Serviced Component and Using Message Queuing
	Create, Configure and Access a Serviced Component
	Create a Serviced Component
	Add Attributes to a Serviced Component
	Transactions
	Object Pooling
	Queued Components

	Register a Serviced Component
	Microsoft Management Console
	Services Installation Tool

	Implement Security
	Using a Serviced Component

	Create, Delete and Set Permissions on a Message Queue
	Create a Message Queue Manually
	Create a Message Queue Programmatically
	Delete a Message Queue
	Set Permissions for a Message Queue

	Sending and Receiving Messages to a Message Queue and Delete Messages from a Message Queue
	Create a Message
	Send a Message
	Receive a Message
	Decide Which Formatter to Use
	Delete Queued Messages

	Handle Acknowledgements
	Peek at Messages
	Receive a Message Asynchronously
	Use BeginReceive/EndReceive and ReceiveCompleted

	Message Security
	Signing a Message
	Verify a Message
	Encrypt a Message
	Decrypt a Message

