

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Microsoft .Net Framework 2.0
Web-based Client Development
(70-528) LearnSmart Exam Manual

Copyright © 2011 by PrepLogic, LLC
Product ID: 010864
Production Date: July 22, 2011

All rights reserved. No part of this document shall be stored in a retrieval system or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the information contained herein.

Warning and Disclaimer
Every effort has been made to make this document as complete and as accurate as possible, but no war-
ranty or fitness is implied. The publisher and authors assume no responsibility for errors or omissions. The
information provided is on an "as is" basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this document.

LearnSmart Cloud Classroom, LearnSmart Video Training, Printables, Lecture Series, Quiz Me Series,
Awdeeo, PrepLogic and other PrepLogic logos are trademarks or registered trademarks of PrepLogic, LLC.
All other trademarks not owned by PrepLogic that appear in the software or on the Web Site (s) are the
property of their respective owners.

Volume, Corporate, and Educational Sales
PrepLogic offers favorable discounts on all products when ordered in quantity. For more information,
please contact PrepLogic directly:

1-800-418-6789
solutions@learnsmartsystems.com

International Contact Information
International: +1 (813) 769-0920

United Kingdom: (0) 20 8816 8036

http://www.preplogic.com/products/video/view-video-training.aspx
mailto: solutions@preplogic.com

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Table of Contents

Abstract . 10

What to Know . 10

Tips . 10

Create and Configure a Web Application . 11

Create a New Web Application . 11

Code-Beside and Inline Programming . 12

Web Site Structure . 13

Dynamic Compilation . 14

Add Web Forms to a Web Application . 14

Add and Configure Web Server Controls . 15

Web Server Controls . 15

Creating Web Server Controls . 15

Configure the Properties of Web Server Controls . 15

Handling Events . 15

Creating Event Handlers . 15

Postponed Events . 16

Naming Containers and Child Controls . 16

HTML Server Controls . 17

Creating HTML Server Controls . 17

Configure the Properties of HTML Server Controls . 17

Examples of Web Server Controls . 18

Programmatically Edit Settings in Web .config . 21

Dynamically Adding Controls to a Web Form . 22

Create Event Handlers . 22

Create Handlers for a Page at Design Time . 22

Respond to Application and Session Events . 23

Manage State and Application Data . 24

Manage State by Using Client-Based State Management Options . 24

Manage State by Using Sever-Based State Management Options . 24

Application State . 24

Session State . 25

Globalization and Localization . 25

Local Resources . 25

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Global Resources . 26

Changing Culture . 26

Accessibility . 26

Visual Accessibility. 26

Implement Site Navigation and Input Validation . 27

The SiteMap Web Server Control . 27

Validation Controls . 28

CustomValidator Control . 29

Validating Controls . 29

Write an ASP.NET Handler to Generate Images Dynamically . 29

Adding an Application Mapping . 29

Configuring ASP .NET to Use the Correct ASP .NET Handler . 30

Writing the ASP .NET Handler to Process the Image . 31

Configure Application Settings . 31

Using the Web Site Administration Tool . 32

Programming a Web Application . 32

Avoid Unnecessary Processing . 32

Cross Page Postbacks . 32

Redirecting the Client . 32

Page and Application State . 33

Detecting Browser Capabilities . 33

Handling Exceptions at Page Level . 34

Accessing the Web Form Header . 34

Integrating Data in a Web Application by

Using ADO.NET, XML and Data-Bound Controls . 35

Data Source Controls . 35

Tabular Data Source Controls . 35

Hierarchical Data Source Controls . 35

Data-Bound Controls . 36

Display Data using Simple Data Bound Controls . 36

The ListControl Derived Controls . 37

The AdRotator Control . 38

Display Data using Composite Data Bound Controls . 39

Binding To Records in the Data Source . 39

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using Templates to Show Data . 40

Showing Data in the Template . 41

Display Data using Hierarchical Data Bound Controls . 42

The Menu Control . 42

The TreeView Control . 42

Manage Connections and Transactions of Databases . 43

The ADO .NET Data Provider Model . 43

The ADO.NET Providers . 43

Enumerating through Specific Providers . 43

Connection Strings in Web .config . 44

Securing Connection Strings . 44

The DbConnection Object . 45

Connection Exceptions . 45

Connection Events . 46

Connection Pooling . 46

The DbTransaction Object . 47

Create, Delete and Edit Connected Data . 47

The DbCommand Object . 47

The DbParameter Object . 48

Executing Database Queries . 48

Using the DbDataReader Object . 49

Asynchronous Operations . 49

Bulk Copy with SqlBulkCopy . 50

Create, Delete and Edit Disconnected Data . 50

The DataSet Object . 50

The DataTable, DataColumn and DataRow Objects . 50

The DataRelation Object . 51

Binding to a DataSet . 51

Copy the Contents of a DataSet . 52

The Strongly Typed DataSet . 52

Using the DbDataAdapter Object . 52

Returning a DataTable from a Database . 53

Modifying a DataTable in Memory . 53

Updating a DataTable to the Database . 54

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The DataView Object . 55

Serializing and Deserializing DataSet Objects . 55

Manage XML Data with the XML Document Object Model . 55

Loading XML into an XmlDocument . 55

Searching and Navigating . 55

Modifying an XmlNode . 57

Modifying the Attributes of an XmlElement . 57

Saving an XmlDocument to XML . 58

Read and Write Xml Data Using XmlReader and XmlWriter . 58

The XmlReader Object . 58

Read Xml Data using the XmlReader . 59

Read XML Data using the XmlTextReader . 59

Read Nodes using the XmlNodeReader . 59

Validating XML Documents . 60

The XmlWriter Object . 61

Write Data using the XmlWriter . 61

Write Data Using the XmlTextWriter . 62

Creating Custom Web Controls . 63

Create a Composite Web Application Control . 63

Create a User Control . 63

Convert a Web Form to a User Control . 63

Adding a User Control to a Web Form or a User Control . 63

Manipulate User Control Properties . 64

Handling Events in User Controls . 64

Dynamically Loading User Controls . 64

Create a Templated User Control . 65

Use the Templated User Control . 65

Create a WebControl Derived Custom Control . 65

Create a Custom Web Control . 65

Adding a Custom Web Control to the Toolbox . 66

Individualize a Custom Web Control . 66

Create a Custom Designer for a Custom Web Control . 67

Create a Composite Server Control . 67

Handling Events in Composite Server Controls . 68

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Bubbling Events from Composite Server Controls . 68

Develop a Templated Custom Control . 69

Tracing, Configuring and Deploying Applications . 69

Use a Web Setup Project . 69

Creating a Web Setup Project . 69

Configuring Deployment Options . 70

Launch Conditions . 70

Custom Wizard Pages . 70

Custom Actions . 71

Registry Entries . 71

Deploying Web Applications . 72

Copy a Web Site using the Copy Web Site Tool . 73

Precompile a Web Site using the Publish Web Site Tool . 73

Optimize and Troubleshoot a Web Application . 74

Customize Event-Level Analysis . 74

Event Providers . 74

Web Events . 74

Use Performance Counters . 75

ASP .NET Tracing . 75

Caching . 76

Application Caching . 76

Output Caching . 76

Customizing and Personalizing a Web Application . 77

Implement a Consistent Page Design Using Master Pages . 77

Default Content . 78

Referencing the Master Page . 78

Master Page Events . 78

Nested Master Pages . 79

Changing Master Pages Dynamically . 79

Customize a Web Page Using Themes . 79

Define the Appearance of Controls Using Skins . 80

User Profiles . 80

Configuring Profile Properties . 81

Anonymous User Profiles . 81

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Dynamically Adding and Removing Child Controls . 81

Implement Web Parts . 81

Arranging and Editing Web Parts . 82

Adding New Web Parts . 83

Connecting Web Parts . 83

Static Connections. 83

Dynamic Connections . 84

Implementing Authentication and Authorization . 84

Configuring Forms Authentication . 84

Setting up the Database . 85

The Membership API . 85

Anonymous Identification . 85

Use Authorization to Establish Rights . 85

Setting up the Database . 86

The Roles API . 86

Checking For Specific Roles . 86

Restricting Access . 87

Use Windows Authentication . 87

Impersonating Users . 87

Login Controls . 88

Configuring Security Information . 88

Configuring the Mail Server . 88

The Login Control . 89

The PasswordRecovery Control . 89

The CreateUserWizard Control . 89

The ChangePassword Control . 90

Creating ASP.NET Mobile Applications . 90

Create a Mobile Web Application Project . 90

Session State . 90

Multiple Forms . 90

Creating Mobile Web Forms and Mobile User Controls . 91

Use Mobile Web Controls . 92

Using Styles . 92

Use Adaptive Rendering . 93

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Selecting Which Adaptive Rendering to Use . 93

Overriding Adaptive Rendering Settings . 93

Use Device Specific Rendering . 94

Device Specific Rendering in Markup . 94

Device Specific Rendering in Code . 95

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Abstract
This Exam Manual is two fold in its purpose. First, it is designed to prepare you for the 70-528 exam. But,
in addition to being an exam preparation tool, this manual is designed to be an introductory text to
transition individuals familiar with C# and the .NET framework to the new .NET Framework 2.0. This is done
by reviewing the new elements of the .NET Framework 2.0 on a very high level. The manual sticks to the
basics and the most important information, giving you a quick glance at the material in the hope that you
can understand the most important features and extrapolate some of the lesser important details through
your own intuition.

What to Know
There’s no hiding the fact that both Microsoft exams and the .NET Framework are difficult. If you’re read-
ing this Exam Manual purely to prepare for the exam, know that the exam will not just ask you questions
regarding specific aspects of the .NET Framework, but it will present detailed questions in coded format
and ask you to derive ideas from material that is new to the .NET Framework 2.0 that you may have never
used in the past. Without question, you should make certain before you sit for this exam that you spend at
LEAST several hours (preferably over the course of several weeks) coding the .NET Framework 2.0 using a
free tool, such as Visual Studio Express. Additionally, you should make sure that you memorize as many of
the new types, classes, and changes to the framework as you possibly can. Murphy’s Law does apply and
it’s most likely that the one thing that you do not commit to memory will be the one thing they WILL test
on. Be careful and be prepared.

Tips
Just like math, there’s no substitution for programming with a hands on approach. Before you consider
yourself an expert in the .NET, make sure that there’s no concept you can’t program your way out of.
Furthermore, you should guard yourself and make sure that you don’t just get stuck in doing things “your
way,” but that you understand the .NET Framework’s methodology for approaching problems, solving dif-
ficult memory situations, and handling exceptions. It won’t just make you a better programmer; it will help
your score!

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create and Configure a Web Application
Create a New Web Application
In .NET Framework 2.0, web applications are created using the Web site project type. This is a new way of
handling web applications and replaces the .NET Framework 1.1 Web Application.

To create a new Web site in Visual Studio 2005 you can select File > New Web Site. To add a Web site to
an existing solution in Visual Studio 2005, select the Solution in Solution Explorer and choose Add > New
Web Site from the context menu.

This launches the Add New Web Site dialog, shown in Figure 1, which allows you to select the language
for your site (C#, VB.NET or J#) and how you will access your Web site. For the purposes of this manual
we’re going to assume that you’re using C#.

Figure 1 – The Add New Web Site dialog.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Depending on your project requirements, you may select how you will access your Web site from the op-
tions listed below:

Location Description

File System A File System based Web site accesses the file system of your computer directly.
When debugging or viewing a File System-based Web site, the lightweight, built-in
Web server provided as part of Visual Studio 2005 is used.

HTTP An HTTP based Web site can access IIS running either locally or remotely. If you enter
a remote URL for your Web site, the remote computer must be running Front Page
Server Extensions.
When debugging or viewing an HTTP based Web site, the IIS server is used.

FTP An FTP based Web site allows you to connect to a remote server. A second dialog al-
lows you to enter your credentials for connection to the remote server.
When using an FTP based Web site, all files are copied locally and any changes made
to the files are made to the local copies. Visual Studio automatically propagates any
changes to the remove server.
When debugging or viewing an FTP based Web site, the locally cached files are used by
the lightweight, build-in Web Server provided as part of Visual Studio 2005.

Code-Beside and Inline Programming
When a new Web site is created it will automatically create a Web Form (Default.aspx) and display it in
the HTML view within the design window. If you look at the Web Form in Solution Explorer you’ll see, as
shown in Figure 2, that there are two files associated with it.

 Figure 2 – Solution Explorer showing two files for the Web Form.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

This Web Form is an example of “code-beside,” and is comparable (albeit a lot simpler) to the “code-be-
hind” model from the .NET Framework 1.1. This isn’t the only model available, as shown by the options in
the following table:

Name Description

Code-beside A separate code file is created for each Web Form with the same name as the Web
Form, but with a CS extension (e.g. Default.aspx.cs). Both files must be deployed in
order for the Web Form to be viewable.

Inline All code is contained within a single file (e.g. Default.aspx) in a <script
runat=”server”> tag. There is only one file to deploy in order for the Web Form
to be viewable.

Code-beside is the preferred model of development as it provides a clean separation between what is
code (in the CS file) and what is HTML markup (in the ASPX file).

In addition to Web Forms, User Controls and Master Pages also support both the code-beside
and inline models.

Web Site Structure
There are several special folders that make up a Web site. If you look at Figure 2 you’ll see that there is an
App_Data folder created by default. Seven other, special folders are defined in the table below:

Folder Description

App_Browsers Contains browser definition files that are used to identify browsers and
their capabilities.

App_Code Contains source code files for classes that are compiled as part of the
Web site.

App_Data Contains any data files for the Web site (including SQL Server Express
2005 databases).

App_GlobalResources Contains resource files that are global in scope.

App_LocalResources Contains resource files that are specific to Web Forms, User Controls or
Master Pages.

App_Themes Contains files defining the appearance of Web Forms or Web Controls for
the web site.

App_WebReferences Contains any files that are needed to define references to
Web Services.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Dynamic Compilation
The Web site model no longer builds a single assembly containing all of the compiled Web Forms and
User Controls for the Web site. Each Web Form or User Control is compiled when it is requested and auto-
matically recompiled as required.

The only exception to this is the App_Code special folder, which is compiled into a single assembly avail-
able to all Web Forms and User Controls within the Web site.

Add Web Forms to a Web Application
A Web Form can be added to a Web site in two ways:

 n By selecting Website > Add New Item from the Visual Studio menu.

 n By selecting Add New Item from the Web site context menu in the Solution Explorer.

Each of these options launches the Add New Item dialog, as shown in Figure 3.

Figure 3 – Adding a Web Form using the Add New Item Dialog

From this dialog you can select what you want to create (in this case a Web Form) and specify its name
and language. You can also specify whether you want to use the code-beside (by checking the Place code
in separate file option) or inline code model.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Add and Configure Web Server Controls

Web Server Controls
Web Server Controls are fully programmable and configurable controls that have the ability to detect
the browser’s capabilities and change their rendering automatically. They are programmable by writing
server-side code to respond to events from the client.

A Web Server Control may render itself as a single HTML tag (such as the Button or Label controls), or as
several different HTML tags (such as the GridView or Calendar controls).

You can tell immediately if a control is a Web Server Control by examining the HTML markup within a Web
Form or User Control for tag names prefixed with asp, e.g. <asp:Button />.

Creating Web Server Controls
Web Server Controls are added from the Toolbox (View >Toolbox or CTRL+ALT+X) and are shown in the
Standard, Data, Validation, Navigation, Login and WebParts tabs.

They can be added to either the Design or Source view by double-clicking the control or dragging the
control from the toolbox onto the Web Form, User Control or Master Page.

You can also add Web Server Controls to a Web Form, User Control or Master Page manually by writing the
HTML markup for the control.

Configure the Properties of Web Server Controls
Properties of Web Server Controls can be configured three different ways:

 n By selecting the Web Server Control in Design view and changing the properties in the Proper-
ties pane (View > Properties Window or F4).

 n By selecting the Web Server Control in Source view and adding the properties as attributes to
the HTML markup for the control.

 n Programmatically, by referencing the control by name and setting the property’s value.

Handling Events
Creating Event Handlers
Event handlers can be created in two ways:

 n By selecting the Web Server Control in Source view and adding an attribute to the Web Server
Control. The attribute name is the event required; its value is the method to call when the event
is raised. You must manually write the event handler signature.

 n By selecting the control in Design view and viewing the Events in the Properties window (shown
in Figure 4). Double clicking in the listbox to the right of the event in question will automatically
write the event handler signature for you.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Figure 4 – The Events for a Button control.

Postponed Events
Most Web Server Controls cause a PostBack when an event occurs at the client. A Button, for instance,
raises the Click event on the server when the button is clicked.

Some controls, however, don’t automatically cause a PostBack, and the event is postponed. A TextBox has a
TextChanged event that doesn’t get called when the text changes, instead occurring when another control
causes the PostBack.

A PostBack can be forced for postponed events by setting the AutoPostBack property to true.

Naming Containers and Child Controls
When a Web Server Control is added directly to a Web Form, User Control or Master Page it is available in
code using the name of the control directly. Under the covers, the compiler automatically exposes the
controls directly contained within the Controls collection as properties of the Web Form, User Control or
Master Page itself.

However, there are Web Server Controls (in particular the data-bound controls such as GridView) that
contain controls that are repeated for each item of data that is being displayed. Each of the controls is
repeated but they have unique names because the parent control acts as a Naming Container for the
child controls.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

In addition to the ID property of the Web Server Control specified in the HTML markup, each Web Server
Control also has a UniqueID property. The UniqueID property is a fully qualified name for the control based
upon the ID of its parent control, as well as its own ID.

You can find controls within a Naming Container by using the FindControl method to search the Controls
collection for the Naming Container. If the control exists, it is returned as a System .Web .UI .Control that can
be cast to the correct control type as required.

HTML Server Controls
An HTML Server Control is a normal HTML tag with the addition of the runat=”server” attribute, and if nec-
essary, the addition of an ID attribute. There is a direct mapping between the HTML tag and the controls
that are available in code on the server.

Unlike Web Server Controls, HTML Server Controls don’t have an event model they can be easily tied into,
and the properties of these controls aren’t consistent as they are for Web Server Controls.

Not all HTML tags have their own HTML Server Control that they map to. If there isn't a specific HTML
Server Control for the HTML tag, the control will be an HtmlGenericControl. The Tag property then specifies
the HTML tag.

Creating HTML Server Controls
HTML Server Controls can be created in two ways:

 n By adding a runat=”server” attribute to an existing HTML tag, ensuring that it has an ID attribute.

 n By adding the control to the Design or Source view of a Web Form, User Control or Master Page
by selecting the required control from the HTML tab of the toolbox.

Configure the Properties of HTML Server Controls
Properties of HTML Server Controls can be configured two different ways:

 n By selecting the HTML Server Control in Source view and adding the properties as attributes to
the HTML markup for the control.

 n Programmatically, by referencing the control by name and setting the property’s value.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Examples of Web Server Controls
It would be impossible to list every nuance of every Web Server Control that exists. The following table
lists some of the more common controls and gives some examples of their properties and methods.

Control Description

AdRotator The AdRotator displays randomly selected banners. Configured via an XML file
(which contains various properties for the advert such as ImageUrl and NavigateUrl).
The AdRotator is displayed at the client using <a> and tags.

Button The Button is rendered as an <input type=”button”> tag and raises a Click event that
is fired when the button is clicked in the client. You can use the Command property
to distinguish between different buttons that use the same event handler.

Calendar The Calendar is used to display a monthly calendar. The SelectedDate property re-
turns the date selected by the user. Several events provide PostBack when the user
performs an action – SelectionChanged when the user selects a date and VisibleMon-
thChanged if the user selects a different month.

CheckBox The CheckBox is rendered as an <input type=”checkbox”> control and allows a user to
select either true or false. The CheckChanged event is raised when the user changes
their selection, but is postponed by default. The Checked property is used to check
the status of the control.

FileUpload The FileUpload control displays as a TextBox and a browse Button that allows a file to
be uploaded to the server. The browse button allows the user to browse their local
machine for the file to upload. The PostBack to the server must occur via another
control. The upload file is available on the server via the PostedFile property.

HyperLink The HyperLink control is rendered at the client as an <a> tag. The NavigateUrl prop-
erty sets the required URL.

Image The Image control is rendered as an tag. The image required is specified using
the ImageUrl property.

ImageButton The ImageButton combines the functionality of the Image and Button controls. It
is rendered at the client as an <input type=”image”> tag and raises a Click event
when clicked.

ImageMap The ImageMap control is similar to an ImageButton, but instead of the entire image
being clickable, regions are defined (CircleHotSpot, RectangleHotSpot, or PolygonHot-
Spot) that allow different actions to be taken based on where the image is clicked.
This is rendered as an tag with a defined usemap attribute that points at a
<map> tag corresponding to the defined regions.

Label The Label allows you to display text, specified by the Text property, and is rendered
as a tag. This control supports CSS styles (via the CssClass property), themes
and skins.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

LinkButton The LinkButton combines the functionality of the HyperLink and Button controls. It is
rendered as an <a> tag but instead of navigating to another page when clicked, a
Click event is raised at the server.

ListControl The ListControl is an abstract control that provides the basic requirements for all list
controls. The ListControl has an Items property that contains a collection of ListItem
objects. The ListItem has a Text property that is displayed to the user and a Value
property that is posted back to the server.

You can populate the Items collection either with HTML markup or by using the
DataSource or DataSourceID properties and binding the control to the data.

The SelectedIndex property returns the index (in Items) of the selected item. Select-
edItem returns the actual ListItem selected and SelectedValue returns the Value of the
selected ListItem.

There are five controls derived from ListControl:

 n BulletedList – rendered as unordered (), or ordered (), tags based
on the BulletStyle property. Unlike the other four derived controls, the Bul-
letedList does not allow the user to select any of the items shown.

 n CheckBoxList – rendered as a series of <input type=”checkbox”> tags that
allow the user to select multiple options. The SelectedIndex, SelectedItem
and SelectedValue will only return the details of the first item selected. The
Items collection must be enumerated and the Selected property evaluated
to determine all the entries selected.

 n DropDownList – rendered as a <select> tag containing <option> tags for
each ListItem to be displayed.

 n ListBox – rendered as a <select> tag (with a size attribute) and <option>
tags for each ListItem to be displayed. The SelectionMode property can be
used to allow the user to select multiple entries from the list, in which case
SelectedIndex, SelectedItem and SelectedValue will only return the details of
the first item selected. The Items collection must be enumerated and the
Selected property evaluated to determine all the entries selected.

 n RadioButtonList – rendered as a grouped series of <input type=”radio”>
tags that allow the user to select a single option.

Literal The Literal control is similar to the Label control as it displays text, specified by the
Text property. It is rendered directly at the client and does not output any tags, nei-
ther does it support CSS styles, themes or skins.

Panel The Panel control is output as a <div> tag and is a control container – it contains
child controls that are displayed on the client. It is useful when you want to show
and hide groups of controls together, which is easily accomplished using the
Visible property.

MultiView The MultiView control is a container control for View controls and doesn’t generate
any tags when it is displayed. Within a MultiView you define several View controls
and you can select which one is displayed by using the ActiveViewIndex property.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

View The View control is exclusively used as a child control of the MultiView and doesn’t
generate any tags when it is displayed. It is a container for other controls that are
displayed if the View is active.

RadioButton The RadioButton control is rendered as an <input type=”radio”> control and allows
the user to select from a mutually exclusive set of options. The Text property sets the
caption of the RadioButton and the GroupName property is used to group RadioBut-
ton controls together. The Checked property is used to determine if the user has
selected a specific RadioButton.

Table The Table control is rendered as a <table> tag and is a container control for TableRow
controls. The Rows property returns a collection of TableRow controls.

TableRow The TableRow control is rendered as a <tr> tag and is a container for TableCell con-
trols. The Cells property returns a collection of TableCell controls.

TableCell The TableCell control is rendered as a <td> tag. It can contain HTML markup, Web
Server Controls, HTML Server Controls or plain text.

TextBox The TextBox allows the user to enter text. The MaxLength property specifies the
maximum number of characters that can be entered and the Text property returns
the text that is entered. There are three modes for a TextBox, specified using the
TextMode property:

 n SingleLine – this is the default TextMode and it is rendered as an <input
type=”text”> tag.

 n MultiLine – this is rendered as a <textarea> tag with the Columns and Rows
properties specifying the size of the area.

 n Password – rendered as an <input type=”password”> tag. Each character
entered by the user is shown as an asterisk.

Wizard The Wizard is a control that is used to display a series of WizardStep controls to the
user. The Wizard control has a WizardSteps property that returns a collection of
WizardStep controls. Only one WizardStep is visible at a time and the current step
is identified by the ActiveStepIndex property. Each WizardStep has a StepType that
determines which of the built-in navigation options are shown.

Xml The Xml control is used to display an XML file or the results of an XSL transform on an
XML file. The DocumentSource property is used to point at an external XML file and
the DocumentContent property is used when the XML is available as a string. An XSL
transformation can be performed on the XML document by setting TransformSource
to a XSL document.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Programmatically Edit Settings in Web.config
You can make changes to the site configuration using the Web Site Administration Tool or by directly
editing Web.config. You can also programmatically access Web.config using the System .Web .Configura-
tion namespace.

Calling the GetSection method on the WebConfigurationManager class returns an object that you must
cast to the correct type as shown in the following table:

Class Configuration Section (within <system.web>)

AnonymousIdentifcationSection <anonymousIdentification>

AuthenticationSection <authentication>

AuthorizationSection <authorization>

CacheSection <caching><cache>

ClientTargetSection <clientTarget>

CompilationSection <compilation>

CustomErrorsSection <customErrors>

DeploymentSection <deployment>

GlobalizationSection <globalization>

HealthMonitoringSection <healthMonitoring>

HostingEnvironmentSection <hostingEnvironment>

HttpCookiesSection <httpCookies>

HttpHandlersSection <httpHandlers>

HttpModulesSection <httpModules>

HttpRuntimeSection <httpRuntime>

IdentitySection <identity>

MachineKeySection <machineKey>

MembershipSection <membership>

OutputCacheSection <cache><outputCache>

OutputCacheSettingsSection <cache><outputCache><outputCacheSettings>

PagesSection <pages>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

ProcessModelSection <processModel>

ProfileSection <profile>

RoleMangerSection <roleManager>

SecurityPolicySection <securityPolicy>

SessionPageStateSection <sessionPageState>

SessionStateSection <sessionState>

SiteMapSection <siteMap>

SqlCacheDependencySection <cache><sqlCacheDependency>

TraceSection <trace>

TrustSection <trust>

UrlMappingsSection <urlMappings>

WebControlsSection <webControls>

WebPartsSection <webParts>

XhtmlConformanceSection <xhtmlConformance>

Once you have a class of the correct type you can use the properties and methods to read or write the
Web.config settings.

Dynamically Adding Controls to a Web Form
Controls can be added to a Web Form (and indeed any control derived from System .Web .UI .WebControls .
WebControl class) by calling the Add method of the Controls collection and passing in the control to be
added. This is usually done in an overridden OnInit method to ensure that the controls are available be-
fore any event handling takes place.

Create Event Handlers

Create Handlers for a Page at Design Time
As with Web Server Controls, the Web Form itself also has several events that occur. However there is no
Visual Studio help for creating these events in C# and they must be added manually to the Web Form.

Each Web Form that you create will have the following Load event handler defined automatically:

protected void Page_Load(object sender, EventArgs e)
{
}

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

There are 15 events in total for the Page and they all have the same method signature – replace Load with
the name of the event you wish to handle.

Page events are, by default, automatically called at runtime. Setting the AutoEventWireup attribute of the
@Page directive to false will stop the automatic wiring up of Page events.

Respond to Application and Session Events
There are also events raised that are specific to the entire application and not a specific Web Form or User
Control. These events are as follows and are defined in Global.asax:

Event Description

Application_Start Raised when the application is started. You can initialize application variables
here and perform any necessary logging.

Application_End Raised when the application is shutdown. You can free any resources used and
perform any necessary logging.

Application_Error Raised when an unhandled exception occurs anywhere within the application.
You can send error emails and perform any necessary logging.

There are also two events that are raised on a per-session basis:

Event Description

Session_Start Raised when a new session begins.

Session_End Raised when a session expires, either explicitly by calling Session .Abandon, or
because the session has timed out.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Manage State and Application Data

Manage State by Using Client-Based State Management Options
ASP.NET provides several ways of handling state on the client:

Name Description

View State View State is used for storing information between requests for the same page. It is
stored as a hidden field in the page and is only useful for temporarily storing values.
If you don’t need to remember the state of controls between iterations of the page,
you can turn View State off by setting the EnableViewState property to false. By
default the View State is not encrypted and any sensitive information is relatively
easy to view. You can add objects to View State by using the ViewState property of
the Web Form – this is a dictionary of key/value pairs.

Control State Control State is similar to View State but cannot be turned off. You need to override
the SaveControlState and LoadControlState methods to access Control State. It is
not enabled by default and you must call the RegisterRequiresControlState method
of the Page to enable it for a control.

Hidden Fields Hidden Fields have to be manually added to the Web Form as HiddenField controls
and the stored data can be accessed using the Value property. Hidden Fields are
only suitable for storing temporary values between requests for the same page.

Cookies Cookies can be stored on the client by accessing the Cookies collection of the Re-
quest object. The Cookies collection is a dictionary of key/HttpCookie pairs. You can
make cookies persistent by setting the Expires property of an HttpCookie, and you
can control the scope of the cookie by setting the Path property.

Query String Query String values can be accessed using the QueryString property of the Request
object. The QueryString collection is a dictionary of key/String pairs. The Query
String forms part of the request for the page and needs to be added to other URLs if
the value is to be persisted between different pages.

Manage State by Using Sever-Based State Management Options
State on the server can be stored either in Application scope or Session scope. Each user has their own
Session state whereas the Application state is shared between all the users; you should never store user-
specific data in the Application state.

Both Application state and Session state are stored as key/Object pairs and the object being stored must
be serializable. When retrieving values from Application or Session state, the Object retrieved must be
cast to the correct type before it is used.

Application State
Application state is specific to the server that the application is running on and because it may be ac-
cessed by several different requests at the same time, you need to Lock the Application state before using
it and UnLock the Application state when finished.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Session State
Session state is specific to a user and is enabled by default. It can be turned off for an entire Web site by
setting the mode attribute of <sessionState> in Web.config to off, or for a specific Web Form by setting the
EnableSessionState attribute of the @Page directive to false.

Session state can be stored in several places depending on your requirements:

State Description

Custom A custom storage provider is being used.

InProc This is the default value in which the session state is stored within the context of the
Web server. This is fine for a simple Web site, but if you’re running the site on multiple
Web servers or must have persistent session data between application restarts, you
must use SQLServer or StateServer.

SQLServer All session data is stored in an SQL server database. Session state is available to mul-
tiple Web servers so that if one of the Web servers fails, the event will not result in any
lost session data.

StateServer All session data is stored in a separate service (the ASP.NET State Service) on the Web
server. Several Web servers can use the service on one Web server. However if the
Web server running the ASP.NET State Service fails, then all Web servers will lose the
state information.

Implement Globalization and Accessibility

Globalization and Localization
Web Forms, User Controls and Master Pages can be displayed in different languages by using resource files
(files with a .resx extension). You can use both local and global resources.

Local Resources
Local resources are specific to a single Web Form, User Control or Master Page and are used to configure
for a different language. Local resources are stored in an App_LocalResources folder within the folder
containing the Web Form, User Control or Master Page (there may be an App_LocalResources folder in
every folder within the Web site).

Local resource files are named using Name[.language].resx where Name is the name of the Web Form,
User Control or Master Page and language is the optional abbreviation for the language to be localized.
For example, a Web Form called Default.aspx may have several files within the App_LocalResources folder.
Default.aspx.resx is the file to use if no other resource files match. Default.aspx.es.resx is specific to Span-
ish and Default.aspx.de.resx is specific to German.

There is only limited support for globalization in Visual Studio. Resource files can easily be created using
the tools, but linking the resource file contents to the Web Server Control is trickier.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Within the resource file you must specify a name for the resource value – this is a combination of a unique
keyword (normally the Web Server Control’s name) and the property that you wish to set, with each value
separated by a period (e.g. Button1 .Text.).

Within the Web Form you must then manually add a meta:resourcekey attribute to Button1 that points at
the name used in the resource file (e.g. meta:resourcekey=”Button1”).

At runtime the correct resource file will be selected and the Web Server Control properties (matched to
the values in the resource file) will be loaded and set.

Global Resources
Global resources are available to any Web Form, User Control or Master Page in the Web site and should
only be used when you need to access the same resource from multiple places. Global Resources are
stored in the App_GlobalResources folder at the root of the Web site.

Global resource files are named as required following the Filename[.language].resx, where Filename is the
name of the resource file and language is the optional abbreviation for the language to be localized.
The format of a global resource file is the same as a local resource file, except that the name of the re-
source value doesn’t need to include the name of the property.

Within the Web Form, User Control or Master Page you add <% Resources: Filename, Name %> where File-
name is the name of the resource file (minus the language or resx extension) and Name is the name of the
resource value.

Changing Culture
There may be times when the culture of the browser (used to determine which resources to use by de-
fault) is incorrect. In these cases you can override the culture for a Web Form by overriding the Initialize-
Culture method of the Page class and set the Culture and UICulture properties to the language abbrevia-
tion for the required culture, not forgetting to call the InitializeCulture method of the base class.

Accessibility
Web Server Controls are designed to be accessible by default. There are however several guidelines that
you should follow.

Visual Accessibility

 n Give every image alt text by setting the AlternateText property. Useful when images are
disabled or not available. Screen readers will read the alt text descriptions.

 n Use colors correctly. Easy to read text in a color that contrasts a solid-colored background is
better for the user.

 n Flexible page layout. Modern browsers allow text to be resized, so provide a layout that allows
text to be resized without breaking completely.

 n Don’t define specific font sizes. Use tags (e.g. <h1>, <p>) to control text sizes to make use of
the user’s preferences.

 n Set table captions. In order to give users with screen readers the option of skipping tables,
provide a caption attribute to specify a description of the table.

 n Identify column headers. Use <th> tags to add headings to columns in tables. This simplifies
navigation for users with screen readers.

 n Avoid client scripts. Screen readers will probably not handle client scripts correctly. You should
avoid these as the Web Content Accessibility Guidelines bar the use of client scripts.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Forms Accessibility

 n Use DefaultFocus to set the cursor position on a form to the location where data entry
normally begins. Typically this is the topmost editable field in a form.

 n Define a tab order. Use the TabIndex property on Web Server Controls so that tabbing between
the fields on the page makes sense.

 n Use DefaultButton to set a default button. Default buttons can be accessed by pressing enter.
This makes using the form a lot simpler.

 n Have useful link text. When adding a hyperlink, use descriptive text for the link and avoid links
that display as “Click here,” or other similar, generalized text.

 n Define access keys for controls. Use the AccessKey property to define keys that can be used in
association with the Alt key to access the control.

 n Use Label controls to provide access keys for TextBox controls. A TextBox doesn’t have a
description that can be used by screen readers. It is best to associate a descriptive Label control
with the TextBox. Use the AccessKey and AssociatedControlID properties of the Label control to
link it to the TextBox.

 n Create form sections. Use the Panel control to create sections on the form and use the Group-
ingText property to describe the controls in that section. This will output <fieldset> and <leg-
end> tags that make the form easier to navigate.

Implement Site Navigation and Input Validation

The SiteMap Web Server Control
The SiteMapPath Web Server Control displays a breadcrumb trail for the Web site based on the contents of
a SiteMap file.

When a SiteMapPath Web Server Control is rendered, a SiteMap file called Web .Sitemap is interrogated to
discover the current page’s position in the hierarchy. This is then displayed as a breadcrumb trail that al-
lows the hierarchy of pages to the current page to be displayed.

The SiteMap file can be shared with the TreeView and Menu Web Server Controls to give consistent naviga-
tion throughout the site.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Validation Controls
Validation Web Server Controls allow input validation to be performed at either the client or the server.
There are five different validation Web Server Controls:

Name Description

CompareValidator Used to compare the value of a control to a specific value (using the ValueTo-
Compare property) or to another control (using the ControlToCompare prop-
erty). The Operator property sets the type of comparison. This can also be used
to determine if the data is of a certain type by setting the Type property.

CustomValidator Used to specify custom validation at the client and/or server. A client script
is attached using the ClientFunctionName property and server validation is
handled using the ServerValidate event.

RangeValidator Used to specify that the data entered is between a set of values (specified us-
ing MinimumValue and MaximumValue properties). The Type property can be
used to specify the type of the required value.

RegularExpression-
Validator

Validates based upon a regular expression specified using the Validation-
Expression property.

RequiredField-
Validator

Used to ensure that a control contains a value. Note that the other controls
don’t attempt to validate an empty control, so you should always use a Re-
quiredFieldValidator as well.

In addition to the properties listed above for the specific controls, each of the Validation Web Server Con-
trols also has a common set of properties:

Property Description

ControlToValidate Set to the name of the control to be validated.

Display Determines how the control is displayed. A value of None indicates that there
is no output (although the ErrorMessage would still be shown in the Valida-
tionSummary), Static to display the Text property and reserve the space for the
message, or Dynamic to display the Text property with no space used if the
message doesn’t need to be shown.

EnableClientScript Set to true (the default setting) to perform client-side validation. Client-side
validation should not be solely relied on and server-side validation should be
performed in tandem.

Enabled Set to false if the validation control is disabled.

ErrorMessage The error message that is displayed in the ValidationSummary when validation fails.

IsValid Set to true if the validation is successful.

Text The message shown when validation fails.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

CustomValidator Control
Both client and server validation routines can be added to a CustomValidator.
A client-side JavaScript function needs to be specified as the ClientFunctionName property with the fol-
lowing signature:

function ClientFunctionName(source, arguments)

The source parameter contains the control that is being validated. The arguments parameter is an object
that has two properties: Value, containing the value being validated; and IsValid, that should be set to true
if validation succeeds.

Server-side validation is handled via the ServerValidate event. This event has two parameters: the source
parameter is a reference to the validation control raising the event; args is a ServerValidateEventsArgs
object that has Value and IsValid as properties.

Validating Controls
Controls are validated automatically at the server side and set the IsValid property on the Web Form. This
should be checked before any event handlers are executed to ensure that execution can go ahead.
Validation Web Server Controls can also be grouped using the ValidationGroup property to separate dif-
ferent sections of a Web Form and only run the necessary validation. When set on Web Server Controls
(the validation controls and the controls that cause a PostBack to occur) only controls within the same
ValidationGroup are evaluated when the PostBack occurs.

A validation control can be manually validated by calling its Validate method. This will set the IsValid prop-
erty of the control and also update the IsValid property of the Web Form.

Write an ASP.NET Handler to Generate Images Dynamically
ASP.NET Handlers implement the IHttpHandler interface and must provide implementations of the following:

 n IsReusable property – determines whether the handler can be pooled and reused on subsequent
requests.

 n ProcessRequest(HttpContext) method – responsible for processing the request and writing the
output to the response.

Adding an Application Mapping
If you’re using a non-standard file extension, then this needs to be mapped to the ASP.NET process. Add-
ing an application mapping is accomplished from the Internet Information Services configuration tool.
For a Web site or a configured Application, the Directory tab of the properties dialog has a Configuration
button. Clicking this shows the Application Configuration and the Mappings tab shows all the file exten-
sion mappings. By clicking the Add button you can add a new mapping, as shown in Figure 5.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 Figure 5 – Adding a File Extension Mapping in IIS

The executable for ASP.NET is the aspnet_isapi.dll file, which, for the .NET Framework v2.0, is at: %WIN-
DOWS%\Microsoft.NET\Framework\v2.0.50727\aspnet_isapi.dll.

Configuring ASP.NET to Use the Correct ASP.NET Handler
Once the mapping is added, you need to add the ASP.NET Handler to Web.Config in the <httpHandlers>
section of <system .web>:

<system.web>
 <httpHandlers>
 <add verb=”*” path=”*.jpg” type=”ImageHandler”>
 </httpHandlers>
<system.web>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Writing the ASP.NET Handler to Process the Image
ASP.NET Handlers need to implement the IHttpHandler interface and implement IsReusable and ProcessRe-
quest. To return an image, we can write the bare bones of the ASP.NET handler as follows:

public class ImageHandler : IHttpHandler
{
 public ImageHandler
 {
 }

 public bool IsReusable
 {
 get
 {
 return(true);
 }
 }

 public void ProcessRequest(HttpContext context)
 {
 // set the MIME type correctly
 context.Response.ContentType = “image/jpeg”;

 // output the image as necessary
 // - either create using System.Graphics
 // - or load from file and return using Response.WriteFile method
 }

Configure Application Settings
There are several files that can contain configuration settings:

 n Machine.config – stores settings that apply to the entire computer. Stored in the %WINDOWS%\
Microsoft.NET\Framework\v2.0.50727\CONFIG folder. It contains settings that apply to all as-
pects of the .NET Framework and not just settings for ASP.NET.

 n Root Web.config – stores settings that apply to all Web sites on the computer. Stored in the
%WINDOWS%\Microsoft.NET\Framework\v2.0.50727\CONFIG folder.

 n Site Web.config – stores settings that apply to a specific Web site and is stored at the root of
the site.

 n Folder Web.config – a Web.config file can exist in any folder and contains settings that only apply
to that folder. There are only a limited number of settings that can be placed in a folder Web.
config file.

When parsing settings, specific settings override the generic ones. So settings in a Folder Web.config file
override those in the Site Web.Config file, which in turn override those in the Root Web.config, which in
turn override those in Machine.Config.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using the Web Site Administration Tool
Manually changing the Web.config file can be tedious and is prone to error. Rather than manually editing
the Web.config file, you can use the Edit Configuration option on the ASP.NET tab of the Web site proper-
ties dialog to set many of the settings that you require.

The Web Site Administration Tool, shipped with Visual Studio 2005, allows you to configure some of the
settings for your Web site:

 n Security – configures security for the Web site. Users, roles and permissions can all be configured.

 n Application – allows application settings to be modified. You can also modify SMTP settings, set
debugging and tracing options, and also define the default error page to display.

 n Provider – allows you to configure the database provider to use for the Membership and
Roles functionality.

Programming a Web Application

Avoid Unnecessary Processing
When a PostBack occurs the IsPostBack property of the Web Form is set to true. You can use check this
property to stop any unnecessary processing from occurring.

Cross Page Postbacks
By default, a Web Server Control posts back to the same page. All the button controls (Button, ImageBut-
ton and LinkButton) have an extra property (PostBackUrl) that allows them to cause the postback to go to a
different page.

When a cross-page PostBack occurs, the contents of the original page are available via the PreviousPage
property of the new Web Form. If the page is not a cross-page PostBack, the PreviousPage property will
be null.

You can access any of the controls on the previous page by calling the FindControl method and specifying
the name of the control you wish to access. You can then cast the Control object to the correct Web Server
Control type.

Redirecting the Client
There are three ways that you can redirect the client to another Web Form:

 n Client code or markup – use JavaScript or Web Server Controls (such as a HyperLink) to request a
new page.

 n Response .Redirect – sends an HTTP 302 code to the client and the client is responsible for redi-
recting to the new page. The new URL is shown in the address bar of the browser. You cannot
access the state of the previous page (using the PreviousPage property), and any state informa-
tion that you need to pass must be handled using another method (cookies, session state, etc.).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Server .Transfer – the transfer to the new page is handled at the server, and as far as the browser
is aware, the original URL is still being viewed. The Transfer method has a preserveForm prop-
erty that, if set to true, passes the form and QueryString parameters to the new page. When the
transfer has taken place, the PreviousPage property contains the original page (as it would for a
cross-page PostBack).

Page and Application State
There are several objects that are provided as part of the Web Form context. These are available through
the static System .Web .HttpContext .Current property, or as properties of the Page and UserControl objects.
Six of the most useful objects are shown below:

Name Description

Application Returns an HttpApplicationState object that provides access to the application prop-
erties and methods of the Web site.

Request Returns an HttpRequest object that provides access to the information of the current
request – headers, cookies, query string, form variables, etc. All information on the
HttpRequest object is read-only.

Response Returns an HttpResponse object that provides access to the information that is to be
sent back to the browser. Most information within an HttpResponse object can be
written and you can modify the text sent to the browser, add and remove cookies,
add headers, etc.

Session Returns an HttpSessionState object that provides access to the current user’s session.

Server Returns an HttpServerUtility object that exposes helper methods and properties that
allow you to handle requests from the client. You can get the last error that occurred,
encode and decode HTML and URLs, and much more.

Trace Returns a TraceContext object that provides methods to write to the trace logs for the
Web Form.

Detecting Browser Capabilities
Not all browsers are equal! You should test your Web site in every browser that your users might use. ASP.
NET controls automatically adapt to the capabilities of the browser requesting the page but you may need
to determine what capabilities the browser has manually.

The Browser property of the HttpRequest returns an HttpBrowserCapabilities object that allows you to
check the capabilities of the browser requesting the Web Form.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

There are several properties exposed by this object that allow you to check things like:

 n Does the browser support JavaScript?

 n Does the browser support frames?

 n Does the browser support ActiveX?

Handling Exceptions at Page Level
We’ve seen earlier that we can handle errors at application level by using the Application_Error event
handler in Global.asax. You can catch individual errors on the page using try/catch blocks to deal with any
specific problems and present specific error messages to the user.

It is also possible to add a Page_Error event handler that will handle any unhandled exceptions for the page.

Rather than using the parameters to the event handler (which are very generic and don’t contain a lot of
information), you can call Server .GetLastError() to return the last exception raised. Once you’ve handled the
error, call Server .ClearLastError() so that any application error handling doesn’t catch the error as well.

Accessing the Web Form Header
The Web Form Header section (contained with the <head> HTML markup) is accessible using the Header
property of the Web Form. This returns an HtmlHead object that has two properties:

Name Description

StyleSheet Returns an IStyleSheet instance that has two methods – CreateStyleRule and Register-
Style which add new styles (in the form of Style objects) to the Web Form.

Title Allows you to programmatically set the title (the <title> HTML element) of the
Web Form.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Integrating Data in a Web Application by Using
ADO.NET, XML and Data-Bound Controls

Data Source Controls

Tabular Data Source Controls
Tabular Data Source controls are used to return data that is table based and gathered from a database or
collections of data returned from an object. All Tabular Data Source controls inherit from the DataSource-
Control abstract class and there are three that are shipped with ASP.NET 2.0:

Name Description

AccessDataSource A more specific version of the SqlDataSource that can only connect to a Mi-
crosoft Access database. You set the DataFile property to the correct MDB file
and then use as you would for the SqlDataSource.

ObjectDataSource Connects to objects, rather than to a database. The TypeName property
specifies the name of the type that is being connected to. There are four sets
of properties that are used to query the object – for instance, SelectMethod
and SelectParameters specify the method used to select data and there are
corresponding methods for Delete, Insert and Update. In addition, the Select-
CountMethod is used to specify the method used to return the total rows in
the data (and is used when paging).

SqlDataSource Connects to any ADO.NET provider-supported database. The ConnectionString
property is used to specify the connection string in Web.config to use (this
needs to specify both the connectionString and providerName). There are four
sets of properties that are used to query the database - for instance SelectCom-
mand, SelectCommandType and SelectParameters specify the method used to
select data. There are corresponding methods for Delete, Insert and Update.

Hierarchical Data Source Controls
Hierarchical Data Source controls are used to return data that isn’t tabular in nature, but, essentially, XML in
format. All Hierarchical Data Source controls inherit from the HierarchicalDataSourceControl abstract base
class. There are two shipped with ASP.NET 2.0:

Name Description

SiteMapDataSource Exposes the sitemap file in the root of the application as a Data Source.

XmlDataSource Allows any XML file, specified in the DataFile property, to be used as a data
source. The TransformFile property allows you to specify an XSL transform
that is to be applied to the XML before it is returned.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Data-Bound Controls
Data bounds controls are those that connect, or more correctly bind, to data. The data bound controls are
all derived from the abstract BaseDataBoundControl base class. The controls shipped as part of ASP.NET
2.0 fall into three categories:

 n Simple – these controls display tabular data. The AdRotator control and all the controls that de-
rive from ListControl fall into the simple data bound control category. These controls inherit from
the abstract DataBoundControl class (which in turn inherits from BaseDataBoundControl).

 n Composite – these controls display tabular data, but unlike simple data bound controls, the out-
put consists of several controls grouped together. The GridView, DetailsView and FormView are
examples of composite data bound controls. These controls inherit from CompositeDataBound-
Control (which, in turn, inherits from DataBoundControl and BaseDataBoundControl).

 n Hierarchical – these controls are used to display hierarchical data; the Menu and TreeView con-
trols fall into this category. These controls inherit from HierarchicalDataBoundControl (which, in
turn, inherits from BaseDataBoundControl).

Data binding is the process of taking data from some source and displaying it in a Web Server Control. We
can specify the source of the data on a Data Bound control in two different ways:

 n Set the DataSource property to an object that supports the IEnumerable interface (e.g. SqlDa-
taReader, DataTable, ArrayList, etc.). The DataBind method must be called, otherwise no data
binding will take place.

 n Set the DataSourceID property to the ID of a Data Source control. If both a DataSource and a
DataSourceID are specified, then DataSourceID takes precedence. Data binding is automatic.

Display Data using Simple Data Bound Controls
There are six simple data bound controls shipped as part of ASP.NET 2.0:

Name Description

AdRotator Used to display randomly selected banners on Web Forms.

BulletedList Display a bulleted list of read-only items. Derived from the abstract ListControl
base class.

CheckBoxList Display a list of check boxes allowing the user to select multiple items. Derived
from the abstract ListControl base class.

DropDownList Display a drop down list allowing the user to select a single item. Derived from
the abstract ListControl base class.

ListBox Display a list allowing the use to select either a single item or, if enabled, multiple
items in the list. Derived from the abstract ListControl base class.

RadioButtonList Display a list of radio buttons allowing the user to select a single item. Derived
from the abstract ListControl base class.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The ListControl Derived Controls
All list controls derive from the abstract ListControl base class; this provides some basic functionality to all
of the controls. The five derived controls then provide a different user-interface view of the same data as
shown in Figure 6.

 Figure 6 – The Five ListControl Derived Controls

The ListControl provides an Items property that returns a collection of ListItem objects, each with a Text and
Value property. The Text is displayed to the user and the Value is posted back to the server.

You can populate the Items collection by manually adding ListItem objects in code, by declaring ListItem
elements in the HTML markup or by data binding and using a data source to return the items.

If you’re using data binding to populate the Items collection, you’ll need to set the DataTextField and Dat-
aValueField properties to indicate which fields from the data are to be used for the Text and Value proper-
ties of the ListItem objects, respectively. You can also use the DataTextFormatString property to control
how the text is formatted.

The SelectedIndex property allows you to get or set the index of the item that is currently selected. If the
derived control allows multiple items to be selected (which may be the case for certain controls, such as
CheckBoxList and ListBox,), then SelectedIndex will return the first item that is selected. You need to iterate
through the Items collection and check the Selected property of each of the ListItem objects to determine
the items that were selected.

Similarly, the SelectedItem property returns the selected ListItem and the SelectedValue returns the Value of
the selected ListItem. Again, if the control allows multiple items to be selected, then you should query the
Items collection to check each ListItem to see if it was selected.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

In addition to the standard properties, each of the derived controls may have their own properties:

Control Property Description

CheckBoxList RepeatColumns The number of columns to show before the items are
wrapped to the next line.

RepeatDirection Set to Horizontal or Vertical, indicating where the next item
will be placed.

ListBox Rows The number of rows to display. If the number of items is great-
er than this value, then scrollbars are added to the ListBox.

SelectionMode By default, the ListBox only allows single selection but setting
this to Multiple allows multiple items to be selected by the user.

RadioButtonList RepeatColumns The number of columns to show before the items are
wrapped to the next line.

RepeatDirection Set to Horizontal or Vertical, indicating where the next item
will be placed.

The ListControl also raises an event, SelectedIndexChanged, when the user selection changes between post
backs to the server.

The ListControl does not automatically post back to the server when the selection is changed and instead
relies on another control to cause the post back. Setting the AutoPostBack property to true overrides this
behavior and causes a post back to occur whenever the user changes their selection.

The AdRotator Control
The AdRotator Control displays randomly selected banners. You can either use data taken from a data
source (by specifying the DataSource or DataSourceID properties) or directly from an XML file containing
the data by setting the AdvertisementFile property.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The data used as the source for the AdRotator can contain the following information:

Name Description

AlternativeText Text to be displayed if the image is unavailable.

Height An optional value specifying the height of the advert.

ImageUrl URL of the image to display.

Impressions An optional number specifying the relative weighting of the advert.

Keyword An optional keyword that can be used to filter the adverts displayed.

NavigateUrl URL to navigate to if the ad is clicked.

Width An optional value specifying the width of the advert.

Display Data using Composite Data Bound Controls
Composite controls are those that display the data using a collection of other controls. There are three
composite data bound controls that ship as part of ASP.NET 2.0:

Name Description

DetailsView Used to display a single record from the data source in a table with each two-col-
umn row corresponding to a field from the data source. Rows can be automatically
generated, bound to a single field from the record or created by using a template to
customize the appearance of the row.

FormView Used to display a single record from the data source. Templates can be created to
display the data and you full control over what is displayed.

GridView Displays data in a table with each record in the data source corresponding to a row.
Columns can be automatically generated, rendered directly to a single field from the
record or created using a template to customize the appearance of a column.

Binding To Records in the Data Source
Both the DetailsView and GridView automatically generate the rows and columns to be displayed. This can
be turned off by setting the AutoGenerateRows or AutoGenerateColumns properties to false. In this case,
you must specify the fields by adding Field definitions to the Fields or Columns collections.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

There are seven types of fields, each derived from the abstract DataControlField class, which you can define as:

Name Description

BoundField Displays the bound data as text when viewing or as a TextBox when in edit mode.

ButtonField Displays a button that, when clicked, raises the RowCommand event. The Button-
Type property is used to specify the type of button (Button, Image, Link) and the
CommandName property is used to differentiate between different buttons in the
same row.

CheckBoxField Displays a Boolean field from the data source as a CheckBox. Displayed as read-
only unless in edit mode.

CommandField Displays a set of buttons that contains buttons as appropriate. May raise specific
events (such as RowDeleting and RowDeleted for the delete command) but always
raises the RowCommand event as well.

HyperLinkField Displays a HyperLink. The Text property can be set to show the same text for the
link in all rows, or you can use the DataTextField to specify the field to display to the
user and the DataTextFormatString to format the output. The NavigateUrl property
can be set to use the same link for every row, or you can use the DataNavigateUrl-
Fields to specify the fields to use to build the URL and the DataNavigateUrlFormat-
String to format the URL correctly.

ImageField Display an Image. You specify the image to display by setting the DataImageUrl-
Field; this can be formatted using the DataImageUrlFormatString.

TemplateField If the preset options don’t fit your needs, then you can define your own template
to output the data in whatever format you require.

Using Templates to Show Data
When the preset options in a DetailsView or GridView don’t fit your requirements or you’re using a Form-
View, then you must use templates to format the data to your requirements.

Within a TemplateField (for the DetailsView or GridView) or directly within the FormView, you define tem-
plates for each of the different sections of the output. You must, at a minimum, define an ItemTemplate
but you can also define several other templates.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The GridView supports the following templates for the TemplateField column:

Name Description

AlternatingItemTemplate Defines the template for every other row in the GridView, making it easy
to distinguish between the rows in the grid.

EditItemTemplate The template displayed when the row is in Edit mode. Used to display
controls (such as a DropDownList) that can’t be rendered automatically.

FooterTemplate The content to be displayed as the column footer.

HeaderTemplate The content to be displayed as the column header.

ItemTemplate Defines the template for showing the data returned.

You can use the following templates in a TemplateField of the DetailsView control:

Name Description

EditItemTemplate The template displayed when the DetailsView is in Edit mode. Used to dis-
play controls (such as a DropDownList) that can’t be rendered automatically.

HeaderTemplate The content to be displayed as the row header (as the first column in the row).

InsertItemTemplate The template displayed when the DetailsView is in Insert mode.

ItemTemplate Defines the template for showing the data returned.

You can use the following templates in the FormView control:

Name Description

EditItemTemplate The template displayed when the FormView is in Edit mode.

FooterTemplate The content to be displayed as the footer of the control after the “data” template.

HeaderTemplate The content to be displayed as the header of the control before the
“data” template.

InsertItemTemplate The template displayed when the FormView is in Insert mode.

ItemTemplate Defines the template for showing the data returned.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Showing Data in the Template
When using a template you must manually bind to the data source in question. There are two methods of
doing this:

 n If you only need to show the field from the data source, then you can use the Eval method. You
would use this method in an ItemTemplate or AlternatingItemTemplate, or if you wanted to show
the column as read-only within the EditItemTemplate.

 n If you want the data to be editable, then you can use the Bind method. You would use this
method in an EditItemTemplate or InsertItemTemplate where the user’s entry needs to be popu-
lated back to the database.

Display Data using Hierarchical Data Bound Controls
The Menu Control
The Menu control is used to display hierarchical data as a menu and is often used in conjunction with a
SiteMapDataSource for navigating a web site.

The items to be displayed are returned from the Items collection as a collection of MenuItem objects. Each
MenuItem has a ChildItems collection that also returns a collection of MenuItem objects.

The Menu control can be populated via code, by specifying the items in markup, or by binding to a data
source. Any data source derived from the abstract HierarchicalDataSourceControl (such as the SiteMapDa-
taSource or XmlDataSource) can provide the data to the Menu; you can also bind to an XmlDocument or to
a DataSet (provided it has relationships defined).

An example of the Menu control is shown in Figure 7.

 ROOT 4 PARENT1
 PARENT2
 PARENT3 4 CHILD1
 PARENT4 CHILD2

 Figure 7 – An example Menu control

The TreeView Control
The TreeView control is used to display hierarchical data as a tree and can be bound to any data source
controls derived from HierarchicalDataSourceControl. When used with a SiteMapDataSource the TreeView
provide site navigation.

The items to be displayed are returned from the Nodes property as a collection of TreeNode objects. Each
TreeNode has a ChildNodes property that also returns a collection of TreeNode objects. Each TreeNode has a
Text property that is shown to the user and a Value property that is posted back to the server. NavigateUrl
is used to specify the URL to be viewed when the node is clicked. If no NavigateUrl is specified then click-
ing the node will cause the node to be selected, raising the SelectedNodeChanged event when the page is
automatically posted back to the server.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The TreeView control can be populated via code, by specifying the items in markup or by binding to a
data source.

An example of the TreeView control is shown in Figure 8.

 Figure 8 – An example TreeView control

Manage Connections and Transactions of Databases

The ADO.NET Data Provider Model
ADO.NET introduces the Data Provider Model for accessing databases. This is an abstract model that
provides a common base for all database interactions. There are several different classes, as we’ll discover
shortly, that all inherit from the same base classes. This allows us, theoretically, to write provider-neutral code.

The ADO.NET Providers
There are four providers installed with the .NET Framework 2.0. These are as follows:

 n System.Data.Odbc – for connecting to data sources using ODBC drivers.

 n System.Data.OleDb – for connecting to data sources using OLE DB drivers.

 n System.Data.OracleClient – for connecting to Oracle 8i Release 3 or later.

 n System.Data.SqlClient – for connecting to SQL Server 7 or later

You can return the details of the ADO.NET providers installed on a machine by using the static GetFactory-
Classes method of the DbProviderFactories class:

DataTable factories = DbProviderFactories.GetFactoryClasses();

This method returns a DataTable that contains a DataRow for each provider containing the following information:

 n Name

 n Description

 n InvariantName (this is the name used to identify the provider)

 n AssemblyQualifiedName (to fully identify the factory class)

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Enumerating through Specific Providers
It is also possible to query a provider to return all of the available data sources. For SQL Server, this returns
all of the databases running on the current network:

DbProviderFactory factory = ~CCC
 DbProviderFactories.GetFactory(“System.Data.SqlClient”);
DataTable databases = factory.GetCreateDataSourceEnumerator(). ~CCC
 GetDataSources();

For SQL Server, this returns a DataTable that contains a DataRow for each database containing the follow-
ing information:

 n ServerName

 n InstanceName

 n IsClustered

 n Version

Connection Strings in Web.config
You can write database connection strings and include them on every page. It is far better, from a mainte-
nance point of view, to store the connection string in Web.config:

 <connectionStrings>
 <add name=”connString” providerName=”System.Data.SqlClient”
 connectionString=”Server=server; Database=database; Uid=user; ~CCC
 Pwd=password;” />
 </connectionStrings>

You give each connection a name and use the providerName property to specify the correct ADO.NET
provider to use. The connectionString contains the provider specific connection string.

The sheer number of different connection strings makes it impossible to list any here. Have a look at
http://www.connectionstrings.com/ for a comprehensive list.

It is then possible to access the centralized connection string’s details by using a static method of the
ConfigurationManager object. The ConnectionStrings property is indexed on the name of the connection
string and returns a ConnectionStringSettings object that you can interrogate to return Name, Provider-
Name or the actual ConnectionString:

dbConn.ConnectionString = ConfigurationManager. ~CCC
 ConnectionStrings[“connString”].ConnectionString;

Securing Connection Strings
Connection strings stored in Web.config contain login information that you don’t want anyone to see. It is
easy to encrypt parts of a Web.config file using the aspnet_regiis .exe command line tool.

When encrypted the connection string can be used as normal by your Web site. It is however non-read-
able to the casual observer.

http://www.preplogic.com/products/video/view-video-training.aspx
http://www.connectionstrings.com/

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

To encrypt the <connectionStrings> element of Web.config you run the following command from the
command line:

aspnet_regiis –pef “connectionStrings” “C:\SITE\”

You specify the element within Web.config that you want to encrypt and the full path to the root of the
Web site.

You can decrypt the <connectionStrings> element in a similar manner:

aspnet_regiis –pdf “connectionStrings” “C:\SITE\”

The DbConnection Object
Connections to databases are managed by classes derived from DbConnection. You access a database us-
ing a specific ADO.NET data provider:

 n OdbcConnection

 n OleDbConnection

 n OracleConnection

 n SqlConnection

Because all the specific classes inherit from DbConnection, they all implement a common set of properties
and methods.

Creating a database connection is accomplished by instantiating a new instance of the required data
provider. You can either pass the connection string to the constructor (which is taken from Web.config) or
set the ConnectionString property as we have here:

SqlConnection dbConn = new SqlConnection();
dbConn.ConnectionString = ConfigurationManager. ~CCC
 ConnectionStrings[“connString”].ConnectionString;

The connection has been created but is not yet open. To open the connection, you call the Open method:

dbConn.Open();

After performing work you then close the connection using the corresponding Close method:

dbConn.Close();

You should only open the connection to the database when you need to and close it as soon as you’re
finished with it.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Connection Exceptions
All database exceptions inherit from the abstract DbException class and there are specific providers for
each ADO.NET data provider:

 n OdbcException

 n OleDbException

 n OracleException

 n SqlException

You can wrap all your database code in a try/catch block and catch either the specific exception, e.g. SqlEx-
ception, or the abstract DbException class.

Connection Events
All of the standard ADO.NET data providers implement an InfoMessage event that you can use to listen for
various events from the connection. You can attach an event handler to this event. The arguments param-
eter to the event handler depends upon the ADO.NET data provider:

 n OdbcInfoMessageEventArgs

 n OleDbInfoMessageEventArgs

 n OracleInfoMessageEventArgs

 n SqlInfoMessageEventArgs

The arguments class is specific to each ADO.NET data provider and there is no common base class.

Connection Pooling
Creating and opening connections to databases is an expensive process. Connection pooling reduces this
overhead by making a “pool” of available connections. Pooling is controlled by parameters placed into the
database connection string. Pooling, if provided by the underlying data source, is enabled by default:

 n OdbcConnection – connection pooling is controlled at the ODBC driver level and is not handled
within the data provider.

 n OleDbConnection – connection pooling is used if the underlying OLE DB provider supports it.

 n OracleClient – all Oracle database connections are pooled by default.

 n SqlClient – all SQL Server database connections are pooled by default.

When a request for a connection to a database is made by calling the Open method, the connection pool
is checked to see if any existing connections are available. If a connection is available, it is returned to
the caller.

If no connections are available, and the maximum pool size has not been reached, a new connection is
made and returned to the caller.

If no connection is available, and the maximum pool size has been reached, the connection is added to
the queue and will wait until a connection becomes available. If no connection becomes available be-
fore the connection timeout has been reached, (the ConnectionTimeout property of DbConnection) an
exception is thrown.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Though a pooled connection is closed by calling the Close method, the connection itself is not actually
closed. Instead, it is released back to the connection pool and reused.

The DbTransaction Object
Every action performed against the database runs in its own transaction. All actions on the same con-
nection can be enlisted in the same transaction (i.e. all actions complete or all actions fail) by making the
connection transactional.

Transactions are started by calling the connection’s BeginTransaction method:

SqlTransaction dbTran = dbConn.BeginTransaction();

This returns an ADO.NET data provider specific transaction, derived from the DbTransaction base class:

 n OdbcTransaction

 n OleDbTransaction

 n OracleTransaction

 n SqlTransaction

Any interactions with the connection are then contained within the same transaction, provided the com-
mand object has its Transaction property set to the connection’s transaction:

dbComm.Transaction = dbTran;

Once the transaction is complete, you must call the Commit method, otherwise all changes will be rolled back:

dbTran.Commit();

You can also manually roll back a transaction (if for instance an exception occurs) by explicitly calling the
Rollback method:

dbTran.Rollback();

Create, Delete and Edit Connected Data

The DbCommand Object
All transactions with the database occur through a command object. All command objects are inherited
from DbCommand and there is a command object specific to each ADO.NET data provider:

 n OdbcCommand

 n OleDbCommand

 n OracleCommand

 n SqlCommand

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You can create a command object and connect it to the correct database in two ways:

 n By creating a new instance and setting the Connection property.

 n By calling the CreateCommand method of the connection object. This automatically populates
the command's Connection and Transaction properties.

In both cases, you’ll have a command object that you can then use to interact with the database. Before
you can use the command object, you must ensure the connection to the database is open.

The DbParameter Object
Parameters allow you to pass values to the queries that you execute at runtime. A command object has
a Parameters property that returns a collection of parameter objects. Each ADO.NET data provider has its
own specific parameter object:

 n OdbcParameter

 n OleDbParameter

 n OracleParameter

 n SqlParameter

You should always use parameters to pass values to your query, whether it is a SQL query or a stored pro-
cedure. Not doing so, especially in the case of SQL queries, leads to the possibility of SQL
 injection attacks.

Executing Database Queries
Before you can query the database using one of the Execute methods you need to configure at least two
other properties of the command:

 n CommandText – the query to execute. This can be a SQL query or a stored procedure.

 n CommandType – specifies what type of query the CommandText is. It defaults to Text indicating
that you’re passing a SQL query. Setting it to a value of StoredProcedure indicates that you’re
passing the name of a stored procedure.

Once you have configured the command object correctly, you have three common methods for executing
the specified query:

Name Description

ExecuteNonQuery Use this when the query you’re executing has nothing to return. DELETE, IN-
SERT and UPDATE queries are commonly performed using this method.

ExecuteReader Executes the query against the database and returns the results of the query
as a DbDataReader.

ExecuteScalar Use this when the query you’re executing only returns a single value. Returns
an Object that you cast to the correct type.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

In addition, the SqlCommand object has an ExecuteXmlReader method that returns an XmlReader object.
This is useful for when you are using the FOR XML extension in SQL Server 2000 and above.

Using the DbDataReader Object
The DbDataReader object provides a connected way to retrieve data from the database. The ExecuteRead-
er method returns the correct DbDataReader for the connection. As with all the ADO.NET objects there is a
specific object, derived from DbDataReader, for each ADO.NET provider:

 n OdbcDataReader

 n OleDbDataReader

 n OracleDataReader

 n SqlDataReader

The returned DbDataReader may not contain any rows of data and this can be checked using the
HasRows property.

The DbDataReader is a forward-only, read-only view of the data. You call the Read method to advance to
the first row in the results and also call the Read method to advance to subsequent rows. The easiest way
to accomplish this is in a while loop, as follows:

 while (dbReader.Read())
 {
 // do something with the row of data
 }

You can access the fields of the current row in several ways:

 n By using an indexer on the reader, e.g. dbReader[0]. This returns an Object that you must cast to
the correct type.

 n By using the name of the field, e.g. dbReader[“ID”]. This returns an Object that you must cast to
the correct type.

 n By using one of the Get helper methods in conjunction with the GetOrdinal method, e.g.
dbReader.GetGuid(dbReader.GetOrdinal(“ID”)). The Get helper methods only accept indexers,
so you must use the GetOrdinal method to return the index of the required field. This returns
objects of the correct type.

When using a DbDataReader the connection to the database is in use for the entire duration of the access.

Asynchronous Operations
Normally queries are synchronous – the required Execute method is called and the call is blocked until the
data is returned. When using SQL Server, you can also perform the same operation asynchronously.

There are three asynchronous operations of the SqlCommand object:

 n BeginExecuteNonQuery

 n BeginExecuteReader

 n BeginExecuteXmlReader

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Each of these methods is overloaded to provide a callback mechanism or by polling using WaitHandle objects.

If you’re using polling you call the Begin method, call the WaitOne method on the WaitHandle and call the
corresponding End method to return the results of the asynchronous operation:

 IAsyncResult async1 = dbComm.BeginExecuteReader();
 // do other things
 async1.AsyncWaitHandle.WaitOne();
 SqlDataReader dbReader = dbComm.EndExecuteReader(async1);

The End method will return the same value as the non-synchronous Execute call (e.g. EndExecuteReader
returns a SqlDataReader, the same as ExecuteReader).

Bulk Copy with SqlBulkCopy
Transferring data from one source to another can be resource intensive. When copying to SQL Server you
have a high-performance option – the SqlBulkCopy object.

The SqlBulkCopy object is used to wrap a SqlConnection object, and provides a WriteToServer method that
accepts objects of the following type:

 n An array of DataRow objects.

 n A DataTable.

 n Any DbDataReader derived class.

So you can copy from an Oracle database by returning the results to copy as an OracleDataReader and
then passing the OracleDataReader to the WriteToServer method.

The SqlBulkCopy object has several properties that control the way the copy occurs. DestinationTable-
Name can be used to set the destination table in the SQL Server database, BatchSize allows you to specify
how many records are copied at a time, and using the ColumnMappings collection you can map columns
between the source and destination.

Create, Delete and Edit Disconnected Data

The DataSet Object
The DataSet is an in-memory representation of data and is disconnected from the database. It contains a
collection of DataTable objects (the Tables property) and relationships between the DataTable objects are
stored as a collection of DataRelation objects (the Relations property).

Unlike most of the objects used for data access, the DataSet object is generic – it will happily hold data
from any ADO.NET data provider and can hold data from different providers at the same time. You can
populate a DataSet manually or from an ADO.NET data provider using a DbDataAdapter object. You must
always create a DataSet before you can populate it:

 DataSet dsData = new DataSet();

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The DataTable, DataColumn and DataRow Objects
The DataTable object represents a table of data and contains a collection of DataColumn objects (the
Columns property), defining the structure of the table, and a collection of DataRow objects (the Rows
property) holding the actual data.

You can use a DbDataAdapter to create and populate a DataTable. This creates both the structure (Data-
Column objects) and content (DataRow objects).

You can manually create a DataTable and add it to the Tables collection of a DataSet:
DataTable dtPlayers = new DataTable(“Players”);

 dsData.Tables.Add(dtPlayers);

You also need to define the DataColumn objects for the DataTable:

 DataColumn dcName = new DataColumn(“Name”);
 dcName.DataType = System.Type.GetType(“System.String”);
 dcName.MaxLength = 64;
 dtPlayers.Columns.Add(dcName);

You can then add DataRow objects to the DataTable:

 DataRow drPlayer = dtPlayers.NewRow();
 drPlayer[“Name”] = “Alan Shearer”;
 dtPlayers.Rows.Add(drPlayer);

The DataRelation Object
The DataRelation object is used to specify the relationship between two DataTable objects (which can be
from different data sources).

To add a DataRelation to a DataSet you need to have references to the columns that make up the relation-
ship in both the parent and child tables. You can then use these to create the DataRelation and add it to
the Relations of the DataSet:

 // get the columns in relationship
 DataColumn dcParent = dsData.Tables[“Clubs”].Columns[“ID”];
 DataColumn dcChild = dsData.Tables[“Players”].Columns[“ClubID”];
 // create the relationship
 DataRelation drPlaysFor = new DataRelation(“PlaysFor”, dcParent, dcChild);
 // add to the data set
 dsData.Relations.Add(drPlaysFor);

You can navigate between the parent and child relationships by using the GetParentRow and GetChild-
Rows methods of a DataRow.

Binding to a DataSet
Because a DataSet can contain more than one DataTable, you have two options when using a DataSet as a
data source for a Web Server Control:

 n Set the DataSource property to be the specific DataTable.

 n Set the DataSource to the DataSet and set the DataMember property to the name of the
specific DataTable.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Copy the Contents of a DataSet
You cannot copy an entire DataSet, but you can copy a DataTable. To copy both the structure and data of
the DataTable use the Copy method:

 DataTable dtCopy = dtOriginal.Copy();

If you only want to copy the structure of the DataTable, use the Clone method:

 DataTable dtClone = dtOriginal.Clone();

The Strongly Typed DataSet
Using the DataSet object is prone to errors, as there is no compile time checking of table names, column
names, etc. You can create a typed DataSet using the DataSet Editor within Visual Studio. Select Add New
Item for the Web site and select the DataSet template.

You can use the graphical designer to add DataTable objects to the DataSet, define the relationships be-
tween the DataTable objects, and define any extra methods that you want to return data. An example of a
typed DataSet is shown in Figure 9.

Figure 9 – A typed DataSet in the DataSet Designer

You can then return a typed DataTable by using the TableAdapter and the correct Get method to return a
typed DataTable object:

 PlayerTableAdapter taPlayers = new PlayerTableAdapter();
 Clubs.PlayerDataTable dtPlayers = taPlayers.GetDataByClub(1);

Each DataRow object within the typed DataTable is also typed (in this case, as a PlayerDataRow) and they
have properties for the DataColumn objects. So the following is perfectly valid:

 PlayerDataRow dtPlayer = dtPlayers.Rows[0];
 lblPlayerName.Text = dtPlayer.Name;

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using the DbDataAdapter Object
Returning a DataTable from a Database
To return data from a database into a DataSet, you need to use a DbDataAdapter derived object. There are
specific ADO.NET data provider versions of the DbDataAdapter:

 n OdbcDataAdapter

 n OleDbDataAdapter

 n OracleDataAdapter

 n SqlDataAdapter

You create the correct version of the DbDataAdapter and then set its SelectCommand property to the correct-
ly configured DbCommand object. You can then call the Fill method to populate a DataTable in the DataSet:

 SqlDataAdapter daPlayers = new SqlDataAdapter();
 daPlayers.SelectCommand = dbComm;
 daPlayers.Fill(dsData, “Players”);

Modifying a DataTable in Memory
When you have a DataTable in memory you are free to modify that data, and add new data to the Table, as
you see fit. As we’ll see shortly, you can also propagate those changes back to the database.

When you’re editing a DataRow, you can freely edit the contents of each row. However, if you’re going
to perform several modifications to the same row, you should call the BeginEdit method on the DataRow
to switch into Edit mode. This suspends any events that may be raised (such as validation rules failing).
When editing is finished, you call the EndEdit method to save the changes to the DataRow or the Can-
celEdit method to abort any changes that have been made.

Each DataRow has a RowState property that indicates what needs to be done to propagate the changes
made to it back to the database. It can be one of the following values of the DataRowState enumeration:

Name Description

Added The DataRow has been added to the DataTable and needs to be propagated to the
database (using an INSERT query).

Deleted The DataRow has been deleted (by calling its Delete method) and needs to be propa-
gated to the database (using a DELETE query).

Detached The DataRow has been created but not yet added to the DataTable. It will not be
propagated to the database.

Modified The DataRow has been modified and needs to be propagated to the database (using
an UPDATE query).

Unchanged The DataRow has not been modified. There is nothing to propagate to the database.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

In addition to each DataRow having a RowState, it may also have several versions of itself in the DataT-
able. By default, when you retrieve the value of a property from a DataRow, you return the current value;
it is also possible to return different versions of the DataRow by specifying the required version from the
DataRowVersion enumeration:

Name Description

Current The current value in the DataRow. If the DataRow has a RowState of Deleted, attempt-
ing to retrieve this version throws an exception.

Original The value that populated the DataRow. If the DataRow has a RowState of Added, at-
tempting to retrieve this version throws an exception.

Proposed This is the value as the DataRow is being edited. If not in Edit mode, then an excep-
tion is thrown.

So, to return the original version of a modified DataRow, you specify Original:

 if (drPlayer.RowState == DataRowState.Modified)
 {
 string strOriginalName = (string)drPlayer[“Name”, DataRowVersion.Original];
 }

Updating a DataTable to the Database
The DbDataAdapter can also be used to propagate changes back to the database. Where you use the Fill
method object to return data from the database, you use the Update method to propagate changes back
to the database.

In order to update the database, the DbDataAdapter needs to know the DELETE, INSERT and UPDATE que-
ries, as well as the SELECT query that it used to populate the DataTable.

These are contained in the following properties:

 n DeleteCommand

 n InsertCommand

 n SelectCommand

 n UpdateCommand

The SelectCommand property of the DbDataAdapter is used to retrieve data from the data source when
you call the Fill method. To propagate changes to the data source when you call the Update method, you
can manually set the DeleteCommand, InsertCommand and UpdateCommand properties to command
objects that will perform the required tasks.

You can also automatically create these extra commands using a DbCommandBuilder object (with a
specific one for each ADO.NET data provider). Using one is as easy as creating an instance of the DbCom-
mandBuilder and specifying the DbDataAdapter that you’re using:

 SqlCommandBuilder cbPlayers = new SqlCommandBuilder(daPlayers);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The commands to DELETE, INSERT and UPDATE will be created in the DbDataAdapter as required. You can
also retrieve the created DbCommand objects directly from the DbCommandBuilder using the GetDelete-
Command, GetInsertCommand and GetUpdateCommand methods.

The DataView Object
The DataView object is a window onto a DataTable and can be sorted and filtered using the Sort, RowFilter
and RowStateFilter properties. A DataView implements the IEnumerable interface so it can be used as a
data source for data binding.

You create a new DataView by setting the Table property of the DataView object to the corresponding
DataTable or passing the DataTable to the constructor:

 DataView dvPlayers = new DataView(dtPlayers);

You can sort the DataView by setting the Sort property (as you would for an ORDER BY clause in SQL):

 dvPlayers.Sort = “ClubId DESC, Name”;

You can also filter the DataView by setting the RowFilter property (as you would for a WHERE clause in SQL):

 dvPlayers.RowFilter = “Name LIKE ‘A%’”;

You can also filter based on the state of the row using the RowStateFilter property:

 dvPlayers.RowStateFilter = DataViewRowState.Added;

Serializing and Deserializing DataSet Objects
You can serialize and deserialize an entire DataSet, or a single DataTable, to and from XML using the Wri-
teXml and ReadXml methods. There are multiple overloads for these methods that allow you to use files or
streams to store the XML.

Manage XML Data with the XML Document Object Model
The XmlNode is an abstract class that forms the basis of all Document Object Model (DOM) interactions.
All of the objects that you will use with the DOM are derived from this base class.

You normally start your interaction with XML using an XmlDocument class and this is instantiated as follows:

 XmlDocument xmlManagers = new XmlDocument();

Loading XML into an XmlDocument
You can then load, if you require, an XML document from a stream, file, TextReader or XmlReader by using
the Load method. For example, to load an XmlDocument from a file:

 xmlManagers.Load(“C:\managers.xml”);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Searching and Navigating
The XmlNode base class provides several properties that can be used for navigation:

Name Description

ChildNodes Returns an XmlNodeList containing all the XmlNode objects that are children of
the current object.

FirstChild Returns the first child of the current XmlNode as an XmlNode. If there are no chil-
dren of the current XmlNode, this returns null.

LastChild Returns the last child of the current XmlNode as an XmlNode. If there are no chil-
dren of the current XmlNode, this returns null.

NextSibling Returns the next XmlNode. If there is no next XmlNode, this returns null.

PreviousSibling Returns the previous XmlNode. If there is no previous XmlNode, this returns null.

ParentNode Returns the parent of the current XmlNode. If there is no parent node, this returns null.

It is also possible to search an XmlDocument using the following two methods:

Name Description

GetElementById Returns an XmlElement with the specified ID (the ID must be defined in
an associated DTD document).

GetElementsByTagName Returns an XmlNodeList containing all elements in the XmlDocument that
have the specified name.

Additionally, it is possible to search any XmlNode derived class using XPath using either of the
following methods:

Name Description

SelectNodes Returns an XmlNodeList containing all nodes that match the XPath expression.

SelectSingleNode Returns the first node that matches the XPath expression.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Modifying an XmlNode
Modifying the children of an XmlNode is accomplished using the following methods:

Name Description

AppendChild Adds the new node to the end of the child nodes.

InsertAfter Adds the new node to the child nodes after the specified child node.

InsertBefore Adds the new node to the child nodes before the specified child node.

PrependChild Adds the new node at the start of the child nodes.

RemoveAll Removes all the child nodes.

RemoveChild Removes the specified node from the child nodes.

ReplaceChild Replaces the specified child node with the new node.

You cannot directly create a new XmlNode. You must use one of the Create methods of the XmlDocument:

Name Description

CreateCDataSection Creates an XmlCDataSection object that can be added to an XmlElement.

CreateComment Creates an XmlComment object that can be added to an XmlDocument
or XmlElement.

CreateElement Creates an XmlElement with the specified name that can be added to Xml-
Document and XmlElement nodes.

CreateTextNode Creates an XmlTextNode that can be added to an XmlElement.

Modifying the Attributes of an XmlElement
The XmlElement is slightly different than the normal XmlNode. In addition to being able to have children, it
can also have attributes. These are handled slightly differently as compared to other XmlNode objects.
The XmlElement has an Attributes property that returns an XmlAttributeCollection. This is a collection of the
XmlAttribute objects for the element. You can retrieve a specific XmlAttribute by specifying the name of the
attribute or the index to the Attributes property:

 XmlAttribute xmlName = xmlPlayer.Attributes[“Name”];

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You must use the methods of the XmlAttributeCollection class to modify the attributes for the XmlElement:

Name Description

Append Adds the new attribute at the end of the attributes.

InsertAfter Adds the new attribute after the specified attribute.

InsertBefore Adds the new attribute before the specified attribute.

Prepend Adds the new attribute at the start of the attributes.

Remove Removes the specified attribute.

RemoveAll Removes all the attributes.

Saving an XmlDocument to XML
You can save an XmlDocument in the same way you can load it – to a stream, file, TextWriter or XmlWriter.
For example to save an XmlDocument to a file:

 xmlManagers.Save(“C:\managers.xml”);

Read and Write Xml Data Using XmlReader and XmlWriter

The XmlReader Object
The XmlReader object is the abstract base class of the three derived classes that allow us to work with
XML documents:

Name Description

XmlNodeReader Provides non-cached, forward-only access to an XmlNode.

XmlTextReader Provides a non-cached, forward-only way to read an XML document.

XmlValidatingReader Validates an existing XmlReader against the specified schema (a DTD, XDR
or XSD document).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Read Xml Data using the XmlReader
The XmlReader, although abstract, has a static Create method that allows you to specify a stream, file or
TextReader that it will use to create a valid XmlReader of the correct type.

You can configure the XmlReader using the XmlReaderSettings class that is optionally passed as a param-
eter to the Create method.

In its simplest form, you can create an XmlReader and iterate it through all the nodes in the document
as follows:

 XmlReader xmlRead = XmlReader.Create(“C:\managers.xml”);
 while(xmlRead.Read())
 {
 // do what we need to
 }

The XmlReader has properties to determine the node type (NodeType), the name of the node (Name) the
value of the node (Value), and the number of attributes (AttributeCount). You can use the indexer (by index
or name) to return the value of the attributes of the node.

Read XML Data using the XmlTextReader
The XmlTextReader is a derived version of the XmlReader. The recommended practice is to use the Create
method of XmlReader to access XML documents. It is, however, still possible to create an XmlTextReader
manually to read from a stream, file or TextReader.

You can create an XmlTextReader (assuming we want to read from a file) as follows:

 XmlTextReader xmlRead = new XmlTextReader(“C:\managers.xml”);

Because XmlTextReader derives from XmlReader you access the child nodes in exactly the same way:

 while(xmlRead.Read())
 {
 // do what we need to
 }

Read Nodes using the XmlNodeReader
The XmlNodeReader is used to iterate over the children of an XmlNode. You create an XmlNodeReader
object by specifying the XmlNode you want to iterate over:

 XmlNodeReader xmlRead = new XmlNodeReader(xmlPlayers);

Because XmlNodeReader derives from XmlReader, you read the child nodes in exactly the same way:

 while(xmlRead.Read())
 {
 // do what we need to
 }

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Validating XML Documents
The XmlReader can be configured to provide validation (by setting the ValidationType property of the
XmlReaderSettings). It is also possible to use the obsolete XmlValidatingReader to validate an
XML document.

You create a validating XmlReader as follows:

 XmlReaderSettings xmlSettings = new XmlReaderSettings();
 xmlSettings.ValidationType = ValidationType.DTD;
 XmlReader xmlValidRead = XmlReader.Create(xmlRead, xmlSettings);

You normally create an XmlValidatingReader by passing in an existing XmlReader derived class and specify-
ing the type of validation in the ValidationType property:

 XmlValidatingReader xmlValidRead = new XmlValidatingReader(xmlRead);
 xmlValidRead.ValidationType = ValidationType.DTD;

For both the XmlReader and XmlValidatingReader, validation of the XML occurs during a call to the Read
method. If the XmlReader encounters an exception, it throws an XmlSchemaValidationException. If the
XmlValidatingReader encounters a validation error, it throws an XmlException. You can override this behav-
ior by catching the validation events in a ValidationEventHandler.

You catch the validation events for the XmlReader by attaching an event handler to the XmlReader
Settings class:

 xmlSettings.ValidationEventHandler += new ValidationEventHandler ~CCC
 (this.ValidationEvent)

For the XmlValidatingReader, you attach the event handler as follows:

 xmlValidRead.ValidationEventHandler += new ValidationEventHandler ~CCC
 (this.ValidationEvent)

By attaching to the ValidationEventHandler event, you can catch any validation errors that occur and stop
any exceptions being thrown (you then have to handle a validation failure manually).

We then have an event handler that will be called when there is validation error:

 private void ValidationEvent (object sender, ValidationEventArgs args)
 {
 // do something with the validation errors
 }

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The ValidationEventArgs exception has three properties that we can use to determine what has occurred:

Name Description

Exception A reference to the XmlSchemaException object which contains detailed information
about the exception.

Message A description of the validation event.

Severity A value from the XmlSeverityType enumeration, either Error or Warning, which indicates
the severity of the validation event.

The XmlWriter Object
The XmlWriter object is the abstract base class for writing XML. There is only one derived class:

Name Description

XmlTextWriter Provides non-cached, forward-only way to write an XML document.

Write Data using the XmlWriter
The XmlWriter is used to write an XML document from scratch. You cannot directly create an XmlWriter.
Instead, you use the Create method to create an instance.

You can configure the XmlWriter using the XmlWriterSettings class that is optionally passed as a parameter
to the Create method.

The XmlWriter can write to a stream, file, StringBuilder, TextWriter or an existing XmlWriter. In its simplest
form, you can create an XmlWriter to write to a file as follows:

 XmlWriter xmlWrite = XmlWriter.Create(“C:\managers.xml”);

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You then use various methods of the XmlWriter to write nodes to the XML document. The commonly used
methods are as follows:

Name Description

WriteAttributeString Writes an attribute to the current element with the specified name, value and
optional prefix and namespace.

WriteCData Writes the specified text (as a CDATA block) as a child of the current element.

WriteComment Writes the specified text (as a comment) as a child of the current element.

WriteElementString Writes a complete element as a child of the current element with the speci-
fied name, value, and optional prefix and namespace. This element can have
no attributes or children.

WriteEndElement Writes the closing element tag to the currently open element.

WriteStartElement Writes the opening element tag with the specified name and optional prefix
and namespace. Once the element is started, any subsequent Write methods
will be on the opened element. You must call the WriteEndElement method
to close the element and move back up the hierarchy.

When writing using the XmlWriter, you must remember where you are in the document. If you start an
element using the WriteStartElement method, you must call the WriteEndElement method to step back up
a level. Otherwise, any other nodes you write will be children of the element.

Once you have constructed the XML document correctly, you call the Close method to close the underly-
ing object. Any open, started elements will be automatically ended in the correct order before the
document is closed.

Write Data Using the XmlTextWriter
The XmlTextWriter is a derived version of the XmlWriter. The recommended practice is to use the Create
method of XmlWriter to access XML documents. It is, however, still possible to create an XmlTextWriter that
will manually write to a stream, file or TextWriter.

You can create an XmlTextWriter (assuming we want to write to a file) as follows:

 XmlTextWriter xmlWriter = new XmlTextWriter(“C:\managers.xml”, ~CCC
 Encoding.Unicode);

Because XmlTextWriter derives from XmlWriter, you can then write to the XML file as you would for XmlWriter.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Creating Custom Web Controls

Create a Composite Web Application Control

Create a User Control
User Controls are files in your Web site with an .ascx extension (this ensures that IIS will not render the
control directly). You can manually create a file with an .ascx extension in your Web site, or you can use
Visual Studio and select Web User Control from the Add New Item dialog.

User Controls are identified within the .ascx file with the @Control directive and can use either the code-
beside or code-behind model. The @Control directive indicates this.

For code-beside, you have a ClassName specified in the directive:

 <%@ Control Language="C#" ClassName="WebUserControl" %>

And for code-behind you have CodeFile and Inherits attributes in the directive:

 <%@ Control Language="C#" AutoEventWireup="true"
 CodeFile="WebUserControl.ascx.cs" Inherits="WebUserControl" %>

Convert a Web Form to a User Control
There may be occasions when you need to turn a Web Form into a User Control. There is a relatively
simple process for this:

1. Remove the <html>, <body> and <form> tags.

2. Change the @Page directive to a @Control directive.

3. Rename the ASPX file to ASCX.

4. If using code-behind, then rename the ASPX.CS file to ASCX.CS and change the CodeFile attri-
bute of the @Control directive appropriately.

5. Change the class defined in ASCX.CS to inherit from UserControl instead of from the Page.

Adding a User Control to a Web Form or a User Control
You can add a User Control to a Web Form, or another User Control, in Visual Studio by dragging it from
the Solution Explorer onto the design view of the Web Form. This adds the required markup to the page.
You can also manually add a User Control to a Web Form by adding the markup manually. You first need
to add a reference to the User Control by adding a @Register directive:

 <%@ Register Src="WebUserControl.ascx" TagName="WebUserControl"
 TagPrefix="uc1" %>

The Src property identifies the relative path (from the current Web Form) to the User Control. The TagPrefix
and TagName are used to define the markup required to add the User Control to the Web Form. The
above tag would be added to the Web Form as follows:

 <uc1:WebUserControl ID=”WebUserControl1” runat=”server” />

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Manipulate User Control Properties
All User Controls inherit from the System .Web .UI .UserControl class and as such have several inherited prop-
erties that can be manipulated by adding the properties directly to the HTML markup in Source view or by
using the Properties window when in Design View.

To add your own properties, you need to add public properties to the User Control. You cannot simply
add public variables to a User Control and use these as properties. You must add a property with get and
set accessors:

 private string m_Name = String.Empty;
 public string Name
 {
 get
 {
 return(m_Name);
 }
 set
 {
 m_Name = value;
 }
 }

Handling Events in User Controls
Events can be added to User Controls in the same way as they are added for a Web Form. A User Control
understands the page lifecycle and has many of the same events as a Web Form (e.g. Init, Load, PreRender).
Web Controls contained within the User Control can also raise their own events. You respond to them in
the same way as you would on a Web Form.

Dynamically Loading User Controls
Rather than defining User Controls directly on a Web Form, it is also possible to load User Controls dynami-
cally. The Page and UserControl classes both have a LoadControl method that accepts the relative path to
the User Control.

This returns a Control instance that you can add to the Controls collection. To add a dynamically loaded
control to a Web Form, you can execute the following:

 Control ctlControl = this.LoadControl("WebUserControl.ascx");
 this.Controls.Add(ctlControl);

You may also need to cast the returned control to the correct type if you want to set any properties of the
User Control:

 WebUserControl ctlWebUserControl = (WebUserControl) ~CCC
 this.LoadControl("WebUserControl.ascx");
 this.Controls.Add(ctlWebUserControl);

You also need to add a @Reference directive so that the types can be used:

 <%@ Reference Control="WebUserControl.ascx" %>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Create a Templated User Control
Templated User Controls allow a page designer to specify the UI for the User Control. There are a series of
steps that you can follow to implement a Templated User Control:

1. Add a User Control to your Web site. This will be the Templated User Control.

2. Add a class to the App_Code folder that derives from the Control class and implements the
INamingContainer interface. This is the container class that provides the data for the template
and you should have a public property for each item of data you want to make available to
the template.

3. Implement a property of the ITemplate type in the User Control (created in Step 1). Apply the
TemplateContainer attribute specifying the container class (created in Step 2) and apply the
PersistenceMode attribute and set it to PersistenceMode .InnerProperty.

4. Add properties to the User Control that allow you to specify the data that is to be available to
the template via the container class.

5. In the Page_Init method of the User Control, first check that there is a template specified. If there
is, then create a new instance of the data container, set the properties on it as required, and pass
the data container to the InstantiateIn method of the ITemplate. Add the data container to the
Controls collection.

Use the Templated User Control
You’ve already seen how to use templated controls when looking at data controls, earlier. Templated User
Controls are no different.

You need to define the template as part of the User Control declaration. So, if we have an ITemplate prop-
erty (see Step 3 above) of UsersTemplate, then you define the User Control as follows:

 <uc1:WebUserControl ID=”WebUserControl1” runat=”server”>
 <UsersTemplate>
 Name: <%# Container.Name %>
 </UsersTemplate>
 </uc1:WebUserControl>

Within the UsersTemplate you can define whatever HTML markup you require. To access the data con-
tainer (see Step 2 above), you use inline data-binding to access the Container object and any properties, in
this case Name, that are defined on it.

In order for the data binding to occur, you must call the DataBind method of the Templated User Control.

Create a WebControl Derived Custom Control

Create a Custom Web Control
User Controls are specific to the Web site in which they are defined. Alternatively, you can create a control
that derives from WebControl in a class library and reuse that control in multiple Web sites.

You create a Custom Web Control by creating a class that inherits from the WebControl class. You then add
properties to the derived class that you can use when rendering the control.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Unlike User Controls, there is no design surface for Custom Web Controls and you must override the
Render method and manually write the HTML markup for the control directly to the HtmlTextWriter object
passed to the Render method.

It is possible, however, to inherit from any Web Control (since they all derive from WebControl) to use as
the basis of a Custom Web Control. If you inherit from the TextBox class, you will get all the properties and
rendering available to it. You change the rendering of the control in the Render method override:

 protected override void Render(HtmlTextWriter output)
 {
 // add whatever markup is required before the TextBox
 base.Render(output);
 // add whatever markup is required after the TextBox
 }

Adding a Custom Web Control to the Toolbox
You can manually add Custom Web Controls to a Web Form or User Control by creating an instance of
the Custom Web Control, setting the properties and then adding it to the Controls collection. This quickly
becomes tedious.

You can, instead, add Custom Web Controls to the Visual Studio toolbox, provided the control is contained
within a class library.

To add the control to the Toolbox, select the Choose Items options from the Tollbox's context menu.
Browsing to the class library allows you to add the controls within it to the Toolbox.

Custom Web Controls added to the toolbox use a default image, but it is possible to use your own image
by applying the ToolboxBitmap attribute to the class definition. This allows you to specify a 16x16 bitmap
that is used and can be a file on disk or a resource within the class library.

Individualize a Custom Web Control
When your custom control is placed onto a Web Form or User Control, it is rendered using a
standard declaration:

 <cc1:WebCustomControl ID="WebCustomControl1" runat="server" />

It is possible to change the markup that is used using the ToolboxData attribute. To change the HTML
markup to always add a Name attribute, you would add the following ToolboxData attribute:

 [ToolboxData(@”<{0}:WebCustomControl runat=””server”” Name=”””” />”)]
 public class WebCustomControl : System.Web.UI.WebControl

Within the HTML markup {0} is a placeholder for the TagPrefix. By default, this is cc suffixed with a number.
It is possible to change this prefix by adding the TagPrefix attribute:

 [assembly: TagPrefix(“WebCustomControls”, “wcc”)]

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You must specify the namespace containing the controls and the prefix that you want to use. As it is an
assembly attribute, the prefix will apply to all controls within the assembly with that namespace. If you
want to use different prefixes for different controls within the same assembly, you must put the controls in
different namespaces.

Create a Custom Designer for a Custom Web Control
When a Custom Web Control is added to a page, the Render method is called and the output from that is
displayed in the Design view in Visual Studio. This may not be correct, especially when your control uses
property values that have not been set and the default values make no sense when rendering.

In these cases, you need to create a Custom Designer that will generate the design time view of your con-
trol. You need to inherit from the ControlDesigner class and then override the GetDesignTimeHtml method
to return the HTML that you want to display in the designer.

 namespace WebCustomControls
 {
 private class CustomDesigner : System.Web.UI.Design.ControlDesigner
 {
 override string GetDesignTimeHtml()
 {
 // return the HTML to be shown in designer
 }
 }
 }

You attach your Custom Designer to your Custom Web Control using the Designer attribute:

 [Designer(“WebCustomControls.CustomDesigner”)]
 public class WebCustomControl : System.Web.UI.WebControl

Create a Composite Server Control
A Composite Server Control is a control that contains other controls. This is similar to a User Control but
there is no designer available. Like Custom Web Controls, you can also add Composite Server Controls to a
class library for reuse in other projects.

A Composite Server Control inherits from the CompositeControl class which, in turn, inherits from WebCon-
trol, so all of what you’ve learned for Custom Web Controls also applies to Composite
Server Controls.

To add controls to your Composite Server Control you need to override the CreateChildControls method
and add the controls to the Controls collection. You will, effectively, end up with a tree of controls that are
rendered correctly to the Web Form or User Control that contains the Composite Server Control.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Handling Events in Composite Server Controls
A Composite Server Control can contain several Web Controls and these controls can raise their own
events. If you have a Button in the Composite Server Control, you will be able to catch the Click event as
long as you add a handler for the event in the CreateChildControls method:

 protected override CreateChildControls()
 {
 button btnSubmit = new Button():
 btnSubmit.Text = “Click Me”;
 btnSubmit.Click += new EventHandler(btnSubmit_Click);
 Controls.Add(btnSubmit);

 // add whatever other controls are required
 }

This adds an event handler for the click event (of type EventHandler). The event handler then needs to be
implemented:

 private void btnSumbit_Click(object sender, EventArgs e)
 {
 // handle the click event
 }

Bubbling Events from Composite Server Controls
There are also times when we want the event to be available outside of the Composite Server Control.
Rather than just handling the event internally, we want the hosting Web Form or User Control to be able
to provide event handling – we need to bubble the event.

To bubble the event, we need to create an event that the Web Form or User Control can attach to. This
needs to be public and, unless we’re creating our own delegate and EventArgs derived class, it needs to
provide the same event handler as we’ve trapped in the Composite Server Control.

To bubble a Button click event, we would create a public EventHandler event property:

 public event EventHandler Submitted;

We then need to raise this event within the Click event handler for the button:

 private void btnSubmit_Click(object sender, EventArgs e)
 {
 Submitted(this, e);
 }

We can then use the Submitted event within the Web Form or User Control to handle the Button being
clicked by using the Properties window in Design View or by adding the event handler in code.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Develop a Templated Custom Control
We’ve already seen how to build a Templated User Control and building a Templated Custom Control is
only slightly more complex. There are a series of steps you can follow to build a Templated Custom Con-
trol within a class library:

1. Add a class to the class library that derives from the Control class and implements the INamingCon-
tainer interface. This is the container class that provides the data for the template and you should
have a public property for each item of data that you want to make available to the template.

2. Add a class to the class library that derives from the Control class and implements the INaming-
Container interface. This is the templated control.

3. Add the ParseChildren(true) attribute to the template control (from Step 2).

4. Create properties on the template control (from Step 2) that are of type ITemplate. These are
populated by the page designer on the Web Form or User Control containing the Templated
Custom Control.

5. The ITemplate properties need to have their PersistenceMode attribute set to PersistenceMode .
InnerProperty.

6. The ITemplate properties need to have their TemplateContainer attribute set to the type of the
data container (from Step 1).

7. Override the DataBind method of the template control (from Step 2) to call the EnsureChildCon-
trols method on the base class.

8. In the CreateChildControls method of the template control, instantiate the correct template (via
the properties defined in Step 4) by passing in a populated data container (from Step 1) using
the InstantiateIn method. Add the data container to the Controls collection.

Tracing, Configuring and Deploying Applications

Use a Web Setup Project
Deploying an ASP.NET Web site can be very simple. A Web site is typically file based and can be deployed
simply by copying the files. If you need to make an update, you can overwrite the existing files. This
makes updating a Web site very easy, as you typically don’t need administrator rights to update the files.

There are times, however, when you need more control over how your application is installed. It may have
pre-requisites, it may need registry entries, etc. If you want your Web site to be downloaded over the in-
ternet, then you’ll want an installer, as this allows the Web site to be installed even if the user doesn’t know
how to configure a Web server.

Creating a Web Setup Project
A Web Setup Project is similar to a standard Setup Project, except that it supports the extra configuration
options required by Web sites. You create a Web Setup Project with these steps:

1. Open your existing Web site and select Add > New Project from the File menu.

2. In the Add New Project dialog expand Other Project Types in the Project Types list and select
the Setup and Deployment option.

3. Select the Web Setup Project in the templates list and give your setup project a name (this is
the name that the installer will be given).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

4. Click OK. This will add the Setup Project to your solution.

5. In the File System editor (shown in the main pane) right-click on Web Application Folder and
select Add > Project Output.

6. In the Add Project Output Group dialog ensure that the Web site is selected in the Project drop-
down list and select the Content Files option. Click OK.

You’ve now created a Web Setup Project for your Web site. By default, a Web Setup Project is empty and
the final two steps above add the required files from the Web site.

You need to manually build a Web Setup Project, as it doesn’t build by default with the rest of your Web
site. Select the Web Setup Project in Solution Explorer and select Build from the context menu.

Configuring Deployment Options
Your Web site may not require any additional configuration but there are times when you may need to
add additional configuration options.

Launch Conditions
Launch Conditions can be used to restrict the machines that your Web site can be installed on. You can
view the Launch Conditions editor by selecting View > Launch Conditions from the Web Setup Project
context menu and this launches the editor, shown in Figure 10 .

 Figure 10 – Launch Conditions Editor

By default, there is one launch condition in a Web Setup Project and this checks that at least version 4 of
IIS is installed. It does this by making use of the Search Target Machine and Launch Conditions nodes:

 n Search Target Machine – contains search criteria for the installation. These can be file, registry or
Windows Installer based criteria. In Figure 10, the “Search for IIS” is a registry search that looks for
the version number of IIS.

 n Launch Conditions – contains the conditions that must be met before the installation can con-
tinue. These can be based on defined search criteria (as “IIS Condition” is in Figure 10) or other
criteria (such as .NET Framework version).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Custom Wizard Pages
The default installation process allows you to specify the Web Server and virtual directory that is to be cre-
ated. You may also want to display a license agreement or change Web.config settings during the install.
In cases such as these, you’ll need to add Custom Wizard Pages.

You can view the User Interface editor by selecting View > User Interface from the Web Setup Project
context menu.

From the User Interface Editor you can add Custom Wizard Pages. You can then reference the data con-
tained on the Custom Wizard Pages in any Custom Actions that you add.

Custom Actions
Custom Actions allow you to perform specific installation options by calling an executable or script during
installation. Information entered in Custom Wizard Pages can be passed to the executable or script.

You can view the Custom Actions editor by selecting View > User Interface from the Web Setup Project
context menu.

Registry Entries
You should store configuration entries in Web.config but there may be times when you need to store
information in the Registry. You can view the Registry editor by selecting View > Registry from the Web
Setup Project context menu and this launches the editor shown in Figure 11.

 Figure 11 – Registry Editor

You can add keys to the subset of keys shown in Figure 11. To add a nested key, you need to add all keys
down to the key you require (only keys that don’t already exist are created). You then need to either make
the key creation conditional (which you can base on criteria specified in the Launch Conditions editor),
or you must set the AlwaysCreate property to true. Keys can also be automatically deleted on uninstall by
setting the DeleteOnUninstall property.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Deploying Web Applications
Two files are generated when you build a Web Setup Project:

 n setup.exe – This is a wrapper for the Windows Installer file and is the file that most users will be
familiar with.

 n <project>.msi – This is a Windows Installer file that contains the setup process. It is called by
setup.exe to perform the install.

The Windows Installer file contains the setup process and running it installs the Web site. During the setup
process you can specify the Site and Virtual Directory for the Web site as shown in Figure 12.

 Figure 12 – Specifying the installation details for the Web site

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Copy a Web Site using the Copy Web Site Tool
If you simply need to move a Web site from server to server, then logging onto the server to install a Web
Setup Project can be impractical. In these situations you can use the Copy Web Site tool.

The Copy Web Site tool can connect to a remote server using several different methods:

 n File System – connect to a Web site on a local drive or shared folder.

 n Local IIS – connect to an IIS Web site on the local machine.

 n FTP Site – connect to a remote Web site using FTP.

 n Remote Site – connect to a Web site using FrontPage Server Extensions. You can also choose to
use an SSL connection for security.

You can use the Copy Web Site tool to copy an entire Web site to/from a remote site or you can synchro-
nize the local and remote sites. Synchronization only changes those files that are changed between the
two Web sites and will also detect version conflicts between the two Web sites.

Precompile a Web Site using the Publish Web Site Tool
When a page is first requested from a Web site, the Web site is first compiled from MSIL to native code.
This is a quick process but the first few hits on a Web site may be delayed while the compilation is taking
place. You can precompile your Web site to remove this delay using the Publish Web Site tool.

The Publish Web Site tool has several options that you should be aware of:

 n Allow this Precompiled Site to be Updatable – doesn’t build the content of ASPX pages so that
you can change the HTML markup after the Web site has been precompiled.

 n Use Fixed Naming and Single Page Assemblies – turns off batch builds so that assemblies are
generated with fixed names.

 n Enable Strong Naming on Precompiled Assemblies – allows you to attach a key file or key con-
tainer to strongly name the precompiled assemblies.

Using the Publish Web Site tool, you can specify the location where you want the precompiled site to be
placed. You can then copy this directory to the remote server.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Optimize and Troubleshoot a Web Application

Customize Event-Level Analysis
It is possible to log events raised by ASP.NET using Event Providers. By default, only “All Errors” and “Failure
Audits” are logged to the Event Log. It is possible to log a lot more than this.

Event Providers
There are five ASP.NET Event Providers:

Name Description

EventLogWebEventProvider Logs to the Event Log. By default, this logs “All Errors” and “Failure Audits”.

MailWebEventProvider Logs the event via mail. You will use one of the derived classes - either
SimpleMailWebEventProvider or TemplatedMailWebEventProvider – to
do the logging.

SqlWebEventProvider Logs the event to an SQL Server.

TraceWebEventProvider Logs the raised events to the ASP.NET tracing system.

WmiWebEventProvider Logs events to the WMI system.

It is also possible to build your own Event Provider by inheriting from WebEventProvider or BufferedWeb-
EventProvider.

Event Providers are configured in the <healthMonitoring><providers> section of the configuration files.
Machine.config has both the EventLogWebEventProvider and a SqlWebEventProvider (to the LocalSqlServer
connection) configured. It is possible to override these settings in Web.config.

Web Events
The Event Providers can log any of the events raised by ASP.NET. These can be broadly split into five cat-
egories, derived from the following base classes:

Name Description

WebApplicationLifecycleEvent Any significant event in the lifecycle of the Web site.

WebAuditEvent Any login attempts, security related events or any failures related
to View State occur.

WebBaseErrorEvent Any errors that occur on the site.

WebHeartbeatEvent Any heartbeat events that are raised at specific intervals.

WebRequestEvent Any events providing request information.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You can specify the events to capture in the <healthMonitoring><eventMappings> section of the configu-
ration files. You then need to tie the <eventMappings> section to the <providers> section by adding a link
in the <healthMonitoring><rules> section.

Use Performance Counters
Performance counters can be used to monitor your application. The .NET Framework 2.0 makes it easy to
use performance counters in your application.

You can create an instance of a performance counter by passing the category name and counter name to
the constructor of the PerformanceCounter class. This creates a read-only counter that you can then query
for its values. If you want to write values, you must pass false as a third parameter to the constructor:

 PerformanceCounter pcRestarts = new PerformanceCounter (“ASP.NET”, ~CCC
 “Application Restarts”, false)

You can now use the Decrement, Increment, and IncrementBy methods to modify the value of the perfor-
mance counter, or the RawValue property to set the counter to a specific value.

ASP.NET Tracing
Tracing allows you to view the execution of a Web Form. Tracing is disabled by default but it can be en-
abled in Web.config by setting the enabled attribute of <system .web><trace> to true. You can also set the
localOnly attribute to true to enable trace requests to only be viewed from the local machine.

When tracing is enabled, you have a section at the end of every Web Form that contains the tracing
information. There are several sections to the tracing information that allow you to view the cookie and
session values that the page is using. The two that you’ll use most often are:

 n Trace Information – provides details related to lifecycle events and timings of the events. You
can write information to this section using the Trace .Write and Trace .Warn methods of the Page
and UserControl classes – the only difference being that Trace.Warn calls are shown in red.

 n Control Tree – shows the entire tree hierarchy for the page. This includes the number of bytes
that the control uses in both the ViewState and ControlState sent to the client.

It is also possible to view all of the tracing information for a Web site by navigating to the trace.axd file
in the root of the Web site. This is an ASP.NET redirect that displays the items held in the trace cache (set
using the requestLimit attribute of <trace> in Web.config) and allows you to view the tracing informa-
tion separately from the pages. By default the trace cache holds the earliest entries and ignores any new
entries. You will need to set the mostRecent attribute to true to always show the latest trace details.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Caching
Caching allows you to store frequently accessed data in memory rather than retrieving it on every page
request. If the data is slow to retrieve and doesn’t change very often, then caching the data in memory
may be quicker as future queries can be made against the cached data.

There are two ways that you can cache data:

 n Application caching – stores any object in memory using the Cache object. The object can be
automatically removed if memory limts, time limits or other dependencies are met.

 n Output caching – rather than storing individual objects in memory, it is possible to keep the
rendered Web Form or User Control for future requests.

Application Caching
A single Cache object exists for the entire application. Both the Page and UserControl classes provide a
Cache property that provides access to it.

Before you use an object from the cache, you need to ensure that the object exists (it may have been
automatically removed) by checking that the object isn’t null:

 if (Cache[“cacheKey”] == null)
 // must create again
 else
 // cast cached object to correct type

You can place any object into the cache but you must cast it to the correct type when returning it from
the Cache object.

You can use the Cache object as you would with any collection, as there are Add and Remove methods to
manipulate the cache.

By default, an object will stay in the cache until it is removed (i.e. it never becomes invalid). There is also an
Insert method (with several overloads) that allows you to specify when the cached object becomes invalid.
These extra parameters are as follows:

 n CacheDependency – allows you to specify a file, cache key, or another CacheDependency object.
When the dependency changes, the cached object becomes invalid and is removed from the cache.

 n DateTime – allows an absolute expiration to be applied to the cached object.

 n TimeSpan – allows a sliding expiration (since the last access of the object) to be added to the
cached object.

 n CacheItemPriority – priority compared to other items in the cache. Objects with a lower priority
are removed first.

 n CacheItemRemovedCallback – a method to call when the cached object is removed from
the cache.

Output Caching
If you build an ASP.NET Web Form or User Control that doesn’t change very often, you can use Output
Caching to store a copy of the rendered Web Form or User Control on the server. When it is requested, the
cached version is used and it can be returned almost instantly. This can significantly improve performance
on pages that have multiple queries.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Output Caching is controlled using the @OutputCache directive and can be applied to both Web Forms
and User Controls.

There are several properties that you can configure, giving you full control over the caching. The ones that
you’ll use the most often are:

 n Duration – the number of seconds to cache the page. This is the only required property.

 n VaryByParam – if your page is parameterized (e.g. a product page), then this is a comma-sepa-
rated list of Query String parameters. The output cache stores a different version of the page for
each combination of the specified parameters. If you do not want to cache the page by param-
eter, then set this to none.

 n VaryByControl – a comma-separated list of User Control IDs that are used to vary the page caching.

 n Shared – applies only to User Controls but specifies whether the same cached content can be
used on different Web Forms.

One problem with using Output Caching is that there will be several cases where most of the page can be
cached but there are areas of the page that shouldn’t be cached. In these cases you can use a Substitution
control to replace portions of the cached page.

The Substitution control is similar to a Literal but the control is exempt from Output Caching. You must
specify a method (using the MethodName property) that accepts an HttpContext object and returns a
String. The returned String is then rendered in place of the Substitution control.

Customizing and Personalizing a Web Application

Implement a Consistent Page Design Using Master Pages
Master pages allow you to implement a consistent page design for all the pages in your application. The
master page defines the look and feel for your Web site. You then create individual content pages that are
merged with the master page when the page is requested.

There are two separate types of page that can be created when using master pages:

 n Master Page – a page with a .master extension. Instead of a @Page directive, the master page
has a @Master directive. A master page is the same as a standard Web Form and can contain
anything that a Web Form can. What makes a master page different is the ContentPlaceHolder
controls that are replaced by content form the content pages at runtime.

 n Content Page – a normal Web Form that is merged with the master page specified in the
MasterPageFile attribute of the @Page directive. Each of the ContentPlaceHolder controls in the
master page has a corresponding Content control that is displayed at runtime.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You can bind a master page to a content page in three ways:

 n Application level – by setting the masterPageFile attribute of the <system .web><pages> ele-
ment in the root Web.config. The master page is applied to all content pages unless the content
page doesn’t contain any Content controls.

 n Folder level – by setting the master page in a Web.config file that isn’t at the root of the site.

 n Page level – by setting the MasterPageFile attribute in the @Page directive of a Web Form.

Default Content
If you don’t include the Content control for the ContentPlaceHolder in the master page, then nothing is
output in the place reserved for the ContentPlaceHolder. It is possible to add default content to a Content-
PlaceHolder by adding the content to the master page. If the Content control is not defined (an empty
Content control is still defined) then the default content will be displayed.

Referencing the Master Page
There are times when you will need to reference properties or controls of the master page from the con-
tent page. A Web Form has a Master property that returns the instance of the master page that is being
used. If you’re not using a master page, then this property returns null.

This is of the MasterPage type and may not provide everything that we need. We can use the @MasterType
directive to specify the file containing the master page using the VirtualPath attribute (set to the same
value as the MasterPageFile attribute of the @Page directive). At runtime, the Master property will be cast
to the correct type (i.e. the specific master page) and you will have access to all of the properties and
controls of the master page.

Master Page Events
As a master page can contain Web Server Controls, it needs to be able to handle the events raised from
those controls. Events can also be raised in content pages as the content page can also contain Web
Server Controls. You should respond to events in the page that contains the Web Server Control.

The only thing to be aware of is the order that page level events are raised. This is not consistent for each
of the events.

For the Init and Unload events, the order is as follows:

 n User Controls contained on Content Page

 n User Control contained on Master Page

 n Master Page

 n Content Page

For the Load and PreRender events, the ordering is different:

 n Content Page

 n Master Page

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n User Controls contained on Content Page

 n User Control contained on Master Page

Nested Master Pages
It is also possible to nest master pages, although Visual Studio 2005 does not support modifying nested
master pages in Design view. Nested master pages are ideal when you have a general site structure in the
top-level master page and different sections with different layouts defining their own master page.

A nested master page is the same as a normal master page, except that it also has a MasterPageFile attri-
bute added to the @MasterPage directive.

Within each Content control on the child master page, you are free to add whatever controls you require
to define the layout of the nested master page. The only caveat is that only ContentPlaceHolder controls
of the child master page are available to the content page. So, if you want a ContentPlaceHolder from the
parent master page to be available to the content page, you must define a new ContentPlaceHolder in the
Content control on the child master page.

Changing Master Pages Dynamically
You can also change the master page that is being used programmatically. The MasterPageFile property
of a Web Form allows you to change the master page that is being used. You must, however, do this in the
PreInit event, before any control population takes place (which occurs during the Init event).

When changing master pages programmatically, you need to ensure that all the master pages that you
may use have the same ContentPlaceHolder controls. Any changes that you make to the ContentPlaceHold-
er controls in one master page must be applied to all the other master page controls.

Customize a Web Page Using Themes
Themes are collections of properties that define the appearance of Web Forms and User Controls within a
Web site. Themes allow you to give your Web site a consistent appearance.

All themes are stored in the App_Themes folder and each them has its own folder corresponding to the
name of the Theme. A theme can contain several different elements:

 n Style sheets – any CSS style sheets defined in the theme folder are automatically linked to any
pages using the theme.

 n Images/resources – any images or resources that are specific to the theme can be stored within
the theme folder.

 n Skins – skins allow you to define custom layouts for Web Server Controls.

Themes can be attached to pages in several different ways:

 n Page level Theme – by attaching a theme using the Theme attribute of the @Page directive.

 n Folder level Theme – by specifying a theme using the Theme attribute of the <pages> element
in Web.config.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 n Page level StylesheetTheme – by attaching a style sheet using the StylesheetTheme attribute of
the @Page directive.

 n Folder level StylesheetTheme – by specifying a theme using the StylesheetTheme attribute of
the <pages> element in Web.config.

Define the Appearance of Controls Using Skins
Skin files change the appearance of controls and allow you to define default settings for controls. A skin
file is created within the specific theme folder in App_Themes and has a .skin extension.

A skin file can contain several different control skins. A control skin is the same as a definition for a normal
Web Server Control, minus the ID tag.

There are two types of control skin that you can define:

 n Default control skin – a default control is applied to all controls within a page. A default control
skin is a control skin that does not have a SkinID attribute defined. You can have only one default
control skin defined per theme.

 n Named control skin – a named control skin has a SkinID attribute defined and is only applied to
controls that have a matching SkinID attribute.

All skin files belonging to a theme are automatically attached to a Web Form when it makes use of the
theme. Named control skin properties override those defined in a default control skin.

The way the theme is attached also impacts the way that properties defined on the control instance on
the Web Form are handled. If the theme is attached using the Theme attribute, then any properties de-
fined on the control in the Web Form are overridden. StylesheetTheme attached themes are overridden by
properties defined on the control in the Web Form.

User Profiles
User profiles provide a standard way of storing user specific information in the database. Once you define
the profile properties, these are automatically made available to your Web Form and are automatically
populated with values for the current user.

User profiles make use of the provider model and, by default, store all their information in an SQL Server
database using the SqlProfileProvider class. Before you can use profiles, you need to configure the data-
base using the aspnet_regsql .exe command line tool.

You configure the profile provider by modifying Web.config. You need to add a <profile> element to <sys-
tem .web> that specifies the defaultProvider that you want to use:

 <profile defaultProvider=”sqlProvider”>

Within the <providers> element you then define the provider itself, pointing at the correct connection
string to use:

 <providers>
 <add name=”sqlProvider”
 type=”System.Web.Profile.SqlProfileProvider”
 connectionString=”connString” />

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configuring Profile Properties
You must define profile properties before you can use them in code. Within the <properties> element of
the <profile>, you define the properties that you want available:

 <properties>
 <add name=”Theme” />
 <add name=”Age” type=”System.Int32” />

Each of these properties is then made available to your code via the Profile property of the Context
object of a Web Form and User Control. The properties defined in Web.config are correctly typed (via
the type attribute).

Anonymous User Profiles
It is also possible for anonymous users (those that are unauthenticated) to have profile information,
although this will not be persisted between visits to the site. You must specify that you want anonymous
user profiles in <system .web>:

 <anonymousIdentification enabled=”true” />

You must also specify which properties of the profile are available. By default, the anonymous user profile
has no properties. You must specify the allowAnonymous attribute on each property that you want to allow:

 <properties>
 <add name=”Theme” allowAnonymous=”true” />

If you’re using anonymous user profiles and then allow the user to authenticate, the anonymous profile
information will be lost. If you wish to keep any information in the anonymous profile, you must respond
to the MigrateAnonymous event of the Profile in Global.asax:

 public void Profile_OnMigrateAnonymous(object sender, ~CCC
 ProfileMigrateEventsArgs args)
 {
 ProfileCommon anonProfile = Profile.GetProfile(args.AnonymousID);

 // copy the profile information

 ProfileManager.DeleteProfile(args.AnonymousID);
 AnonymousIdentificationModule.ClearAnonymousIdentifier();
 Membership.DeleteUser(args.AnonymousID, true);
 }

Dynamically Adding and Removing Child Controls
You can add and remove controls at runtime. You can do this directly on the Web Form or User Control
but it is much easier if you make use of a PlaceHolder control.

In your code, you create an instance of the control you require and add this to the Controls collection of the
PlaceHolder. You can do this at any stage of the page lifecycle but the earlier the better. If you’re relying on
the View State of the control being persisted across post backs, you must do this in the Init event handler.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Implement Web Parts
Web parts are components of a Web Form that the user can move, display and hide. You can think of them
as gadgets that the user can use to individualize the Web Form for their requirements.
Web Parts can be created in two ways:

 n By defining a custom control that inherits from the WebPart abstract base class. This method
provides the most functionality to the Web Part.

 n By using existing controls (Web Server Controls, Custom Controls or User Controls). These are auto-
matically wrapped by a GenericWebPart class which provides a reduced subset of functionality.

To enable the use Web Parts on your page, you need to follow several steps:

 n Add a WebPartManager control to the page before any other Web Part controls.

 n Add a WebPartZone control to the page which will contain the Web Part controls. If you add
more than one WebPartZone to the page, it will allow users to move the Web Part controls be-
tween zones.

 n Add Web Parts to your WebPartZone control (either a WebPart derived control or a control that
will be automatically wrapped by a GenericWebPart).

The default view of a Web Part enabled page is BrowseDisplayMode. When in BrowseDisplayMode you have
limited control over what you can do to the Web Parts on the page – limited to minimizing them (to only
display their title) or closing them completely.

You can change the mode of the Web Parts by setting the DisplayMode property of the WebPartManager
instance to one of the static properties defined on WebPartManager. Each of these different modes allows
slightly different functionality.
Once you’re finished with a particular mode, the DisplayMode property should be reset to BrowseDisplayMode.

Arranging and Editing Web Parts
There are two modes that you can use to allow users to personalize their site experience:

 n DesignDisplayMode – in addition to the functionality provided by BrowseDisplayMode, the Web
Parts can also be moved. This is either within a single WebPartZone or to another WebPartZone.

 n EditDisplayMode – in addition to the functionality provided by DesignDisplayMode, EditDisplay-
Mode also allows the title, direction and appearance of Web Parts to be configured. You can also
delete Web Part controls when in EditDisplayMode. This requires the addition of an EditorZone
control to the page to hold editing tools and the selection of which editing tools (Appearance-
EditorPart and LayoutEditorPart) you wish to use.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Adding New Web Parts
In order to allow the user to add new Web Part controls to a page, you need to be in CatalogDisplayMode.
This requires a CatalogZone to be defined that contains the different types of control that the user can
add. There are three types of Web Parts that can be added using a specific CatalogZone Web Part:

 n DeclarativeCatalogPart – allows you to declare Web Parts within the page and these are always
available for the user to add.

 n ImportCatalogPart – allows Web Part descriptions to be imported from file. These are simply
settings that are applied to a specific type of Web Part.

 n PageCatalogPart – this keeps track of the Web Parts that the user has chosen to close, allowing
them to be re-added to the page.

Connecting Web Parts
It is also possible to connect Web Parts together so that they can share information between themselves.
Web Parts are connected using a consumer-provider model.

To enable connections, the underlying control (whether it is a WebPart derived control or a GenericWeb-
Part wrapped control) must be configured correctly.

To be a provider, you must define a method that returns the value to be passed to the consumer. This
method must be annotated with the ConnectionProvider attribute:

 [ConnectionProvider(“ProviderName”, “ValueProvider”)]
 public string GetValue()
 {
 // return the value
 }

To be a consumer, you must define a method that accepts the value passed by the provider. This property
must be annotated with the ConnectionConsumer attribute:

 [ConnectionConsumer(“ConsumerName”, “ValueConsumer”)]
 public void SetValue(string strValue)
 {

 // use the value
 }

You can then define static connections within the Web Form or allow the user to create their own
dynamic connections.

Static Connections
Static connections are configured using a WebPartConnection control. Once configured, it is always avail-
able. This is added to the <StaticConnections> element for the WebPartManager:

 <StaticConnections>
 <asp:WebPartConnection ID=”wpConn1”
 ProviderID=”ProviderControlID”
 ProviderConnectionPointID=”ValueProvider”
 ConsumerID=”ConsumerControlID”
 ConsumerConnectionPointID=”ValueConsumer” />
 </StaticConnections>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Dynamic Connections
Users can also create their own connections. In order to support this, you must add a ConnectionZone
control to the page and switch to ConnectDisplayMode. When in this mode, you can break existing con-
nections and configure new ones. The ConnectionZone control will interrogate all the Web Parts visible
and only allow you to connect compatible Web Parts.

Implementing Authentication and Authorization
Authentication is the process of deciding whether a user is allowed to access your Web site. Authorization
is the process of deciding what rights a user has within your Web site.

By default, your Web site is configured to authenticate access to any restricted pages using Windows
Authentication. This presents the user with a browser generated login dialog when a user requests a
restricted page.

This is fine when your application is an intranet site and you can integrate with Active Directory, but when
you need to build an internet site you need a different mechanism.

Configuring Forms Authentication
With Forms Authentication, you present the user with an HTML login page and manage the entire user
database as part of your Web site.

To enable Forms Authentication, you need to modify the <authentication> element in Web.config:

 <authentication mode=”Forms”>
 <forms loginUrl = “login.aspx” />
 </authentication>

This will redirect all unauthenticated users to the login.aspx Web Form when they request a restricted page.

Forms Authentication, by default, uses cookies to store the authentication token for the user. You can also
choose to store the authentication token as part of the URL by setting the value of the cookieless attribute
to one of the following values:

 n UseCookies – will always use cookies to store the authentication token.

 n UseUri – will always use the URL to store the authentication token.

 n AutoDetect – will use cookies or the URL depending upon the specific browsers configuration.

 n UseDeviceProfile – this is the default setting and uses cookies if the browser’s profile (not what
the specific browser indicates) indicates that it supports cookies.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Setting up the Database
By default, Forms Authentication uses an SQLEXPRESS database located in the App_Data folder. To use an
external database you must first use the aspnet_regsql .exe command line tool to provision the database
and then configure the Membership Provider in Web.config. You need to add a <membership> element to
<system .web> that specified the defaultProvider that you want to use:

 <membership defaultProvider=”sqlMembershipProvider”>

Within the <providers> element you then define the provider itself, pointing at the correct connection
string to use:

 <providers>
 <add name=”sqlMembershipProvider”
 type=”System.Web.Security.SqlMembershipProvider”
 connectionStringName=”connString”>

The Membership API
You have direct access to the database storing the Membership information via the System .Web .Security .
Membership class. This has static methods that allow you to perform several actions against the database,
the most common of which are as follows:

 n CreateUser, DeleteUser, UpdateUser – allow you to manage individual users.

 n GetUser, GetAllUsers – allow you to return either a specific user from the database or a collec-
tion containing all the users.

 n FindUsersByEmail, FindUsersByName – allow you to return users that match the specified
email address or username.

 n ValidateUser – allows you to manually authenticate users against the database.

Anonymous Identification
If you know that your Web site is not going to use authentication, you can turn authentication off com-
pletely in Web.config:

 <authentication mode=”None”>

Use Authorization to Establish Rights
Once authenticated, you need to establish the rights of your user. This is accomplished using roles. By
default, all users are granted access to all Web Forms within the Web site and you need to restrict access to
specific locations.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Setting up the Database
By default, Forms Authentication uses a SQLEXPRESS database attached to the App_Data folder. To use an
external database, you must first use the aspnet_regsql .exe command line tool to provision the database
and then configure the Roles Provider in Web.config. You need to add a <roleManager> element to <sys-
tem .web> that specified the defaultProvider that you want to use:

 <roleManager defaultProvider=”sqlRoleProvider”>

Within the <providers> element you then define the provider itself, pointing at the correct connection
string to use:

 <providers>
 <add name=” sqlRoleProvider”
 type=”System.Web.Security.SqlRoleProvider”
 connectionStringName=”connString”>

The Roles API
You have direct access to the database storing the Roles information via the System .Web .Security .Roles
class. This has static methods that allow you to perform several actions against the database, the most
common of which are as follows:

 n CreateRole, DeleteRole – allow you to manage individual roles.

 n GetAllRoles – returns a collection containing all the roles.

 n FindUsersInRole – returns a collection of users in a specific role.

 n AddUserToRole, AddUsersToRole, AddUserToRoles, AddUsersToRoles – add a user (or collec-
tion of users) to a role (or collection of roles).

 n DeleteUserFromRole, DeleteUsersFromRole, DeleteUserFromRoles, AddUsersFromRoles
– delete a user (or collection of users) from a role (or collection of roles).

 n IsUserInRole – checks whether a user is in a specified role.

Checking For Specific Roles
There are two ways you can check for a user belonging to a specific role. You can use the Roles .IsInRole
method, passing the username and role, to check if the specified user is in the given role.

The Page and UserControl classes also provide a User property that contains the details of the current user.
You can use the User .IsInRole method, passing the role, to check if the current user is in the specified role.

However, by default, the Roles collection for the current user in Forms Authentication is empty and never
populated. You need to add the following hack to the application’s AuthenticateRequest event in Global.asax:

 if (Context.Request.IsAuthenticated == true)
 Context.User = new System.Security.Principal.GenericPrincipal(~CCC
 User.Identity, Roles.GetRolesForUser(User.Identity.Name));

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Restricting Access
You can restrict access to Web Forms by manually checking that a user is in a given role in code by using
one of the IsInRole methods in a Web Form.

You can also configure access to files and directories in Web.config. Within <system .web> you can define
an <authorization> element that has <allow> and <deny> children that specify the user or roles that are
allowed to access the specified resource. You specify users using the users attribute on <allow> or <deny>
and the roles using the roles attribute. Multiple users or roles are comma separated and you can use the
special value of “*” to mean all users and “?” to mean unauthenticated or anonymous users. It is important
to remember that the order in which <allow> or <deny> statements appear is the order in which those
rules are applied.

There are two ways to specify the <authorization> element within Web.config:

 n <system .web><authorization> - this applies the specified roles to the directory, and all sub-direc-
tories, containing Web.config.

 n <location><system .web><authorization> - this allows more fine grained control.

The <location> element allows you to configure settings for specific directories or files using the path
attribute. Setting path to a directory causes the authorization rules to apply to that directory and all sub-
directories, while specifying a file applies the authorization rules just to that file.

Use Windows Authentication
Windows Authentication is the default method of authentication and is configured in Web.config in the
<authentication> element of <system .web>:

 <authentication mode=”Windows” />

Windows Authentication replaces the Membership Provider and retrieves all the user information directly
from Active Directory. Any user groups the user belongs to are applied as roles (available from the User .
IsInRole method). You must not have a Role Provider configured when using Windows Authentication. If
you do, the Windows user groups will not be applied correctly to the user.

Impersonating Users
When accessing files or network resources, a Web site uses the ASPNET (IIS5) or Network Service (IIS6) ac-
count. This is actually configured in the <processModel> element of Machine.config. You can override this
behavior by modifying Machine.config. This changes the setting for all Web sites on the machine:

 <processModel userName=”user” password=”pass” />

If you need to configure this on a Web site basis, you will need to use impersonation. This can be config-
ured in Machine.config (for all Web sites) or in Web.config by modifying the <identity> element:

 <identity impersonate=”true” />

Impersonation causes all file or network resource requests to use the current user’s Windows account. For
users that aren’t authenticated (either they’re not logged in or the Web site is using Forms Authentication),
the IUSR_machine account is used.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

You can also impersonate a specific user account by adding those details to the <identity> element:

 <identity impersonate=”true” userName=”user” password=”pass” />

Login Controls
When using Forms Authentication, you need to build all your own login pages (login, registration, etc.).
This can be very tiresome and is repeated on every Web site you build. The ASP.NET Login Controls are
tied directly to the Membership Provider and simplify much of this work for you:

 n Login – displays username and password text boxes and a checkbox to indicate that login infor-
mation is to be remembered and authentication to be automatic next time.

 n LoginView – allows you to display different information to logged-in and anonymous users. You
define a LoggedInTemplate and an AnonymousTemplate that are shown to the user as necessary.

 n LoginStatus – displays a login link for anonymous users and a logout link for logged-in users.
You can specify the text displayed using the LoginText and LogoutText properties, or, if you want
to use images, you can use the LoginImageUrl and LogoutImageUrl properties.

 n LoginName – displays the username of the current logged in user.

 n PasswordRecovery – allows users to retrieve their password. Depending upon the Forms Authen-
tication settings, this will either create a new password or send the existing password to the user.

 n CreateUserWizard – allows users to register on the site. There is a default set of information (user-
name, password, email address) but it can be extended to gather whatever information is required.

 n ChangePassword – allows a logged in user to change their password.

Configuring Security Information
The default configuration for the Membership Provider is to require the user to enter a username, pass-
word and email address as the minimum information that is required. You can also specify that each user
must enter a secret question and answer by setting the requiresQuestionAndAnswer attribute to true when
defining the Membership Provider being used.

Configuring the Mail Server
Several of the login controls send emails to the user. In order to send mail you need to configure the

 <mailSettings> element in <system.net>
 <mailSettings>
 <smtp deliveryMethod="network" from="noreply@noreply.com">
 <network host="localhost"></network>
 </smtp>
 </mailSettings>

You need to set the from attribute to the from address, otherwise you will get a runtime error when using
the Login Controls. You also need to set host to the address of the mail server. If the mail server requires
authentication, you can set the username and password attributes.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The Login Control
Simply putting a Login control on a Web Form provides all the application logic you need to allow people
to login to your site. The control takes care of authenticating the user against the database and redirect-
ing to the correct location once login is complete.

If you need to provide your own authentication logic, then you can override the control’s Authenticate
event to add your own authentication. You must set the Authenticated property of the AuthenticateEvent-
sArgs to true, or false, indicating whether the user was authenticated correctly.

The PasswordRecovery Control
The PasswordRecovery control sends a password to the email address specified for the user. If necessary, it
will also ask for the answer for the user’s secret question before emailing the password.

Which password is sent depends on the settings of the Membership Provider. If the Membership Provider
is configured to store one-way hashed passwords, a new password will be emailed to the user. If clear-text
password is stored in the database, the existing password will be emailed to the user.

The email to send is configured using a MailDefinition element of the control. You can specify a text file to
use as the basis of the email using the BodyFileName attribute and when this is parsed the <% username
%> and <% password %> strings are replaced with the correct values.

If you need further customization of the email you can catch the SendingMail event which is raised just
before the mail is sent. The Message property of the passed event arguments contains the message that is
to be sent.

The CreateUserWizard Control
The CreateUserWizard control allows users to register with your site. It asks all of the information required
for the Membership Provider configuration (username, password, email address) as well as the optional
secret question and answer if necessary.

You have full control over which steps are shown in the Wizard and you can define extra steps and add
them to the WizardSteps collection for the control. If you need to, you can also override the two default
steps – CreateUserWizardStep and CompleteWizardStep – and replace them with custom content.

In order to save the information entered in custom steps, you should handle the CreatedUser event
(this is fired after a call to Membership .CreateUser) so you can save any profile information to the
Membership Provider.

Set the CancelDestinationPageUrl to specify a page for the user to be taken to if they click the Cancel button.

Once the wizard is complete, the user is shown the CompleteWizardStep and is shown a Continue button.
You can either specify the ContinueDestinationPageUrl property for the CreateUserWizard control or over-
ride the ContinueButtonClick event to transfer the user to the next page.

You can configure the email sent when a user registers using a MailDefinition element in the same way as
for the PasswordRecovery control.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The ChangePassword Control
The ChangePassword control allows a user to change their password by entering their old password and
a new password. If necessary, it will also ask for the answer for the user’s secret question before changing
the password.

You can configure the email sent when the password is changed using a MailDefinition element in the
same way as for the PasswordRecovery control.

Creating ASP.NET Mobile Applications

Create a Mobile Web Application Project
A mobile Web Application is the same as a standard ASP.NET Web Application except that it uses Mobile
Web Forms rather than a standard Web Form.

Whereas a Web Form inherits from System .Web .UI .Page, a Mobile Web Form inherits from System .Web .
UI .MobileControls .MobilePage. The same applies to User Controls – a User Control inherits from System .Web .
UI .UserControl, whereas a Mobile User Control inherits from System .Web .UI .MobileControls .MobileUserControl.

A Mobile Web Form uses Mobile Controls to handle rendering correctly to mobile devices. These controls
are all contained within the System .Web .UI .MobileControls namespace and use the mobile prefix (rather
than asp). This prefix is not registered by default, so at the top of all Mobile Web Forms and Mobile User
Controls you’ll see the following @Register directive:

 <%@ Register TagPrefix="mobile" Assembly="System.Web.Mobile" ~CCC
 Namespace="System.Web.UI.MobileControls" %>

Session State
Most mobile devices don’t allow cookies, so you should make sessions cookieless by setting the session-
State element in Web.config:

 <sessionState cookieless=”true” />

Multiple Forms
Unlike a Web Form, a Mobile Web Form does not contain a <Form> element. Mobile Web Forms use a
<mobile:Form> to contain the controls that are displayed and each Mobile Web Form can contain several
<mobile:Form> controls. Only one <mobile:Form> can be displayed at a time and this is controlled with
the ActiveForm property of the Mobile Web Form.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Creating Mobile Web Forms and Mobile User Controls
Creating a Mobile Web Form, or Mobile User Control, is similar to creating a normal Web Form or User Con-
trol. From the Add New Item dialog you can choose the correct item to add as shown in Figure 13.

 Figure 13 – Adding a Mobile Web Form using the Add New Item dialog

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Use Mobile Web Controls
Mobile Web Controls are contained in the System .Web .UI .MobileControls namespace. They provide a
subset of the functionality available through normal Web Controls. Some of the common Mobile Web
Controls and their Web Control equivalents are shown in the following table:

Control Description

Command Provides the functionality to post user input from UI elements back to the
server, similar to the Button, ImageButton and LinkButton Web Controls.

Image Used to display an image from a set of device-specific images.

Label Equivalent to the Label Web Control.

Link Equivalent to a HyperLink Web Control and displays a text link. An image
link should be created using the Image Mobile Web Control and setting the
NavigateUrl property.

List Similar functionality to the DataList and Repeater Web Controls.

ObjectList Similar functionality to the DataGrid Web Control.

SelectionList Combines the functionality of the CheckBox, CheckBoxList, DropDownList, List-
Box, RadioButton and RadioButtonList Web Controls. The SelectType property
is used to specify which type of list is displayed.

TextBox Equivalent to a TextBox Web Control, except there is no automatic post back,
read-only or multiline functionality.

ValidationSummary Equivalent to the ValidationSummary Web Control. The CompareValidator,
CustomValidator, RangeValidator, RegularExpressionValidator and Required-
FieldValidator also have Mobile Web Form equivalents.

Using Styles
Mobile Web Forms do not use CSS style sheets. Instead, they make use of the StyleSheet Mobile Web
Control. Within the StyleSheet, you define several Style Mobile Web Controls that define the styles to be
applied. These styles are then applied to Mobile Web Controls using the StyleReference property.
The Style control only supports a limited subset of styles – BackColor, Font and ForeColor.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Use Adaptive Rendering
Adaptive rendering is the process a control uses to render differently based upon the browser that is re-
questing the Web Form. The User-Agent header, passed as part of the request, is used to identify the browser.

Adaptive rendering can be used by all controls; a few of the normal Web Controls use adaptive rendering,
too. Mobile Web Controls, however, make extensive use of adaptive rendering. If you look at the System .
Web .UI .MobileControls .Adapters namespace, you’ll see that there are several classes that can be broadly
grouped into three different Adapter Sets:

 n CHTML – these adapters are used to render the control to Compact HTML and are prefixed
with Chtml.

 n HTML – these adapters are used to render the control to standard HTML and are prefixed
with Html.

 n WML – these adapters are used to render the control to Wireless Markup Language and are
prefixed with Wml.

Which adapter set is chosen depends on the capabilities of the calling browser. If the browser supports
HTML 3.2 and JavaScript, the HTML Adapter Set is used. The CHTML Adapter Set is used if the browser
does support HTML 3.2 but doesn’t support JavaScript. The WML Adapter Set is used if the browse sup-
ports WML 1.1.

You’ll see that nearly all the Mobile Web Controls have an adapter – there is a ChtmlLinkAdapter, an
HtmlLinkAdapter and a WmlLinkAdapter. However you will notice that not all Mobile Web Controls have a
CHTML adapter – there is an HtmlTextViewAdapter but there isn’t an equivalent CHTML adapter.

The CHTML Adapter Set is derived from the HTML Adapter Set. Only HTML Adapter Set controls that use
scripting have an equivalent CHTML Adapter. Otherwise, the HTML Adapter is used.

Selecting Which Adaptive Rendering to Use
Control Adapters are attached to Mobile Controls automatically by the ASP.NET runtime. Depending on
the specific browser’s functionality, a different Adapter Set is applied.

The different Adapter Sets are specified in the global Web .config file (usually stored in the C:\WINDOWS\
Microsoft .NET\Framework\v2 .0 .50727\CONFIG folder).

Under the <system .web><mobileControls> element, there is a <device> element for each Adapter Set. The
<device> elements can also inherit from each other and you can see that the CHTML Adapter Set (Cht-
mlDeviceAdapters) inherits from the HTML Adapter Set (HtmlDeviceAdapters).

Within each Adapter Set definition there are <control> elements that specify the name of the control and
the adapter that is to be used.

Overriding Adaptive Rendering Settings
It is also possible to override the Control Adapter used in specific instances by defining a .browser file in
the App_Browsers folder of the Web site. You can use this method of specifying Control Adapters for nor-
mal Web Controls and Mobile Web Controls. Any settings defined in the App_Browsers folder override any
specific Mobile Control settings and also any settings defined in the global browsers list (at C:\WINDOWS\
Microsoft .NET\Framework\v2 .0 .50727\CONFIG\Browsers).

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

A .browser file contains a <browsers> element which contains individual <browser> elements that map
to a specific browser using the refID attribute (pointing at a specific <browser> definition in the global
browsers list). Within this <browser> element, you can specify a Control Adapter to use for a given control
in an <adapter> element:

 <controlAdapters>
 <adapter controlType="System.Web.UI.WebControls.Menu"
 adapterType="System.Web.UI.WebControls.Adapters.MenuAdapter" />
 </controlAdapters>

In this case we’re specifying a MenuAdapter Control Adapter for the Menu Web Control. This will override
any other Control Adapter specified for the Menu Web Control.

Use Device Specific Rendering
Device specific rendering is a method whereby you can determine what is output depending upon the
functionality of the browser. Adaptive rendering is one form of this but you can also control what is ren-
dered both in HTML markup and also directly in code.

Device Specific Rendering in Markup
You can provide device specific rendering in markup using the DeviceSpecific Mobile Web Control. This
can be applied as a child control within all Mobile Web Controls (this functionality is inherited from the
base MobileControl class).

This control is tied to the <deviceFilters> element in a mobile Web.config and there are several predefined
filters, including isHTML32, isPocketIE, supportsColor and supportsJavaScript. These are compare filters and
you can define your own in Web.Config in the <system .web><deviceFilters> element by specifying a <fil-
ter> with a name, compare and argument. For instance the isHTML32 filter is defined as follows:

 <filter name="isHTML32" compare="PreferredRenderingType"
 argument="html32" />

You can also define an evaluator filter that calls a method (returning a boolean) on a specific class by
specifying a filter with a name, type and method. For instance:

 <filter name=”isAfternoon” type=”className” method=”methodName” />

Both compare and evaluator filters can be used as the Filter attribute to a <Choice> element of the Devic-
eSpecific control:

 <mobile:Label ID=”Label1” runat=”server>
 <DeviceSpecific>
 <Choice Filter=”isPocketIE” Text=”Is running Pocket ID” />
 <Choice Filter=”isHTML32” Text=”Supports HTML 3.2” />
 <Choice Text=”Not Pocket IE and no support for HTML 3.2” />
 </DeviceSpecific>
 </mobile:Label>

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Exam 70-528 .NET Framework 2.0 Web-based Client Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The <Choice> elements are checked in order and the first one that matches sets the Text property of the
containing control. If you don’t specify a Filter attribute to a <Choice> element, then that will be used as
the default value.

Device Specific Rendering in Code
You can also check the capabilities of the browser when rendering the page using the Request .Browser prop-
erty. This returns an HttpBrowserCapabilities class that you can interrogate to determine what to display.

The list of properties for the HttpBrowserCapabilities class is extensive. You can check if the browser is a
mobile device (IsMobileDevice), whether JavaScript is supported (JavaScript), the version of the browser
(MajorVersion and MinorVersion), whether Java and ActiveX are supported (JavaApplets and ActiveXControls
respectively), and return the User-Agent string (Browser).

Using the properties available you can show or hide certain controls, change the text or images displayed,
and so on.

http://www.preplogic.com/products/video/view-video-training.aspx

	Tips
	Abstract
	What to Know
	Create and Configure a Web Application
	Create a New Web Application
	Code-Beside and Inline Programming
	Web Site Structure
	Dynamic Compilation

	Add Web Forms to a Web Application
	Add and Configure Web Server Controls
	Web Server Controls
	Creating Web Server Controls
	Configure the Properties of Web Server Controls

	Handling Events
	Creating Event Handlers
	Postponed Events

	Naming Containers and Child Controls
	HTML Server Controls
	Creating HTML Server Controls
	Configure the Properties of HTML Server Controls

	Examples of Web Server Controls
	Programmatically Edit Settings in Web.config
	Dynamically Adding Controls to a Web Form

	Create Event Handlers
	Create Handlers for a Page at Design Time
	Respond to Application and Session Events

	Manage State and Application Data
	Manage State by Using Client-Based State Management Options
	Manage State by Using Sever-Based State Management Options
	Application State
	Session State

	Globalization and Localization
	Local Resources
	Global Resources
	Changing Culture

	Accessibility
	Visual Accessibility

	Implement Site Navigation and Input Validation
	The SiteMap Web Server Control
	Validation Controls
	CustomValidator Control
	Validating Controls

	Write an ASP.NET Handler to Generate Images Dynamically
	Adding an Application Mapping
	Configuring ASP.NET to Use the Correct ASP.NET Handler
	Writing the ASP.NET Handler to Process the Image

	Configure Application Settings
	Using the Web Site Administration Tool

	Programming a Web Application
	Avoid Unnecessary Processing
	Cross Page Postbacks
	Redirecting the Client
	Page and Application State
	Detecting Browser Capabilities
	Handling Exceptions at Page Level
	Accessing the Web Form Header

	Integrating Data in a Web Application by Using ADO.NET, XML and Data-Bound Controls
	Data Source Controls
	Tabular Data Source Controls
	Hierarchical Data Source Controls

	Data-Bound Controls
	Display Data using Simple Data Bound Controls
	The ListControl Derived Controls
	The AdRotator Control

	Display Data using Composite Data Bound Controls
	Binding To Records in the Data Source
	Using Templates to Show Data
	Showing Data in the Template

	Display Data using Hierarchical Data Bound Controls
	The Menu Control
	The TreeView Control

	Manage Connections and Transactions of Databases
	The ADO.NET Data Provider Model
	The ADO.NET Providers
	Enumerating through Specific Providers

	Connection Strings in Web.config
	Securing Connection Strings

	The DbConnection Object
	Connection Exceptions
	Connection Events
	Connection Pooling

	The DbTransaction Object

	Create, Delete and Edit Connected Data
	The DbCommand Object
	The DbParameter Object
	Executing Database Queries
	Using the DbDataReader Object
	Asynchronous Operations
	Bulk Copy with SqlBulkCopy

	Create, Delete and Edit Disconnected Data
	The DataSet Object
	The DataTable, DataColumn and DataRow Objects
	The DataRelation Object
	Binding to a DataSet

	Copy the Contents of a DataSet
	The Strongly Typed DataSet
	Using the DbDataAdapter Object
	Returning a DataTable from a Database
	Modifying a DataTable in Memory
	Updating a DataTable to the Database

	The DataView Object
	Serializing and Deserializing DataSet Objects

	Manage XML Data with the XML Document Object Model
	Loading XML into an XmlDocument
	Searching and Navigating
	Modifying an XmlNode
	Modifying the Attributes of an XmlElement
	Saving an XmlDocument to XML

	Read and Write Xml Data Using XmlReader and XmlWriter
	The XmlReader Object
	Read Xml Data using the XmlReader
	Read XML Data using the XmlTextReader
	Read Nodes using the XmlNodeReader
	Validating XML Documents
	The XmlWriter Object
	Write Data using the XmlWriter
	Write Data Using the XmlTextWriter

	Creating Custom Web Controls
	Create a Composite Web Application Control
	Create a User Control
	Convert a Web Form to a User Control
	Adding a User Control to a Web Form or a User Control
	Manipulate User Control Properties
	Handling Events in User Controls
	Dynamically Loading User Controls
	Create a Templated User Control
	Use the Templated User Control

	Create a WebControl Derived Custom Control
	Create a Custom Web Control
	Adding a Custom Web Control to the Toolbox
	Individualize a Custom Web Control
	Create a Custom Designer for a Custom Web Control

	Create a Composite Server Control
	Handling Events in Composite Server Controls
	Bubbling Events from Composite Server Controls

	Develop a Templated Custom Control

	Tracing, Configuring and Deploying Applications
	Use a Web Setup Project
	Creating a Web Setup Project
	Configuring Deployment Options
	Launch Conditions
	Custom Wizard Pages
	Custom Actions
	Registry Entries

	Deploying Web Applications

	Copy a Web Site using the Copy Web Site Tool
	Precompile a Web Site using the Publish Web Site Tool
	Optimize and Troubleshoot a Web Application
	Customize Event-Level Analysis
	Event Providers
	Web Events

	Use Performance Counters
	ASP.NET Tracing
	Caching
	Application Caching
	Output Caching

	Customizing and Personalizing a Web Application
	Implement a Consistent Page Design Using Master Pages
	Default Content
	Referencing the Master Page
	Master Page Events
	Nested Master Pages
	Changing Master Pages Dynamically

	Customize a Web Page Using Themes
	Define the Appearance of Controls Using Skins
	User Profiles
	Configuring Profile Properties
	Anonymous User Profiles

	Dynamically Adding and Removing Child Controls

	Implement Web Parts
	Arranging and Editing Web Parts
	Adding New Web Parts
	Connecting Web Parts
	Static Connections
	Dynamic Connections

	Implementing Authentication and Authorization
	Configuring Forms Authentication
	Setting up the Database
	The Membership API
	Anonymous Identification

	Use Authorization to Establish Rights
	Setting up the Database
	The Roles API
	Checking For Specific Roles
	Restricting Access

	Use Windows Authentication
	Impersonating Users

	Login Controls
	Configuring Security Information
	Configuring the Mail Server
	The Login Control
	The PasswordRecovery Control
	The CreateUserWizard Control
	The ChangePassword Control

	Creating ASP.NET Mobile Applications
	Create a Mobile Web Application Project
	Session State
	Multiple Forms
	Creating Mobile Web Forms and Mobile User Controls

	Use Mobile Web Controls
	Using Styles

	Use Adaptive Rendering
	Selecting Which Adaptive Rendering to Use
	Overriding Adaptive Rendering Settings

	Use Device Specific Rendering
	Device Specific Rendering in Markup
	Device Specific Rendering in Code

