

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Microsoft .NET Framework 2.0
Windows-based Application Development
(70-526) Learn SmartExam Manual

Copyright © 2011 by PrepLogic, LLC
Product ID: 010878
Production Date: July 22, 2011

All rights reserved. No part of this document shall be stored in a retrieval system or transmitted by any
means, electronic, mechanical, photocopying, recording, or otherwise, without written permission from
the publisher. No patent liability is assumed with respect to the use of the information contained herein.

Warning and Disclaimer
Every effort has been made to make this document as complete and as accurate as possible, but no war-
ranty or fitness is implied. The publisher and authors assume no responsibility for errors or omissions. The
information provided is on an “as is” basis. The authors and the publisher shall have neither liability nor
responsibility to any person or entity with respect to any loss or damages arising from the information
contained in this document.

LearnSmart Cloud Classroom, LearnSmart Video Training, Printables, Lecture Series, Quiz Me Series,
Awdeeo, PrepLogic and other PrepLogic logos are trademarks or registered trademarks of PrepLogic, LLC.
All other trademarks not owned by PrepLogic that appear in the software or on the Web Site (s) are the
property of their respective owners.

Volume, Corporate, and Educational Sales
Favorable discounts are offered on all products when ordered in quantity. For more information, please
contact us directly:

1-800-418-6789
solutions@learnsmartsystems.com

International Contact Information
International: +1 (813) 769-0920

United Kingdom: (0) 20 8816 8036

http://www.preplogic.com/products/video/view-video-training.aspx
mailto: solutions@preplogic.com

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Table of Contents

Abstract . 6

Tips . 6

What to Know . 6

1.0 Creating a UI for a Windows Forms Application by Using Standard Controls 7

1.1 Adding and Configuring a Windows Form . 7

Adding a Windows Form to a Project at Design Time . 7

Form Class . 8

Configuring a Windows Form to Control Functionality . 8

1.2 Managing Control Layout on a Windows Form . 8

Grouping and Arranging Controls . 8

Panel . 8

GroupBox . 9

TabControl . 9

FlowLayoutPanel . 9

TableLayoutPanel . 10

Using the SplitContainer Control to Create Dynamic Container Areas 11

1.3 Adding and Configuring a Windows Form Control . 11

Using the IDE to Add a Control to a Windows Form

or Other Container Control of a Project at Design Time . 11

Adding Controls to a Windows Form at Run Time . 12

Modifying Control Properties . 12

Configuring Controls on a Windows Form at Run

Time to Ensure that the UI Complies with Best Practices . 12

Creating and Configuring Command Controls . 12

Creating and Configuring Text Edit and Display Controls . 13

Using List-Based Controls . 13

ListBox . 13

ComboBox . 13

CheckedListBox . 14

Configuring a WebBrowser Control . 14

Adding and Configuring Date Setting Controls . 14

Displaying Images by Using Windows Forms Controls . 15

Configuring the NotifyIcon Component . 16

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Creating Access Keys for Windows Forms Controls . 17

1.4 Creating and Configuring Menus . 17

Creating and Configuring a MenuStrip Component . 17

Changing the Displayed Menu Structure Programatically . 18

Creating and Configuring the ContextMenuStrip Component . 18

1.5 Creating Event Handlers for Windows Forms and Controls . 18

Using the Windows Forms Designer to Create Event Handlers . 18

Managing Mouse and Keyboard Events and Programming

a Windows Forms Application to Recognize Modifier Keys . 19

Using the Windows Forms Designer to Create Default Event Handlers 20

Connecting Multiple Events to a Single Event Handler . 20

Using the Code Editor to Override Methods Defined in the Base Class . 21

2.0 Integrating Data in a Windows Forms Application . 22

2.1 Implementing Data-Bound Controls . 22

Using the DataGridView Control to Display and

Update the Tabular Data Contained in a Data Source . 22

Using a Simple Data-Bound Control to Display

a Single Data Element on a Windows Form . 22

Implementing Complex Data Binding to Integrate Data from Multiple Sources 23

Navigating Forward and Backward through Records in a DataSet in Windows Forms 24

Defining a Data Source by Using a DataConnector Component . 24

2.2 Managing Connections and Transactions . 24

Configuring a Connection to a Database . 24

Enumerating through Instances of Microsoft SQL Server . 25

Opening an ADO .NET Connection to a Database . 25

Closing an ADO .NET Connection to a Database

by Using the Close Method of the Connection Object . 26

Protecting Access to Data Source Connection Details . 26

Creating a Connection Designed for Reuse in a Connection Pool and Controlling a

Connection Pool by Configuring Connection String Values Based on Database Type 26

2.3 Creating, Adding, and Editing Data in a Connected Environment . 27

Retrieving Data by Using a DataReader Object . 27

Building SQL Commands . 27

Creating Parameters for a Command Object . 27

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Performing Database Operations by Using a Command Object . 28

Retrieving Data from a Database by Using a Command Object . 29

Performing Asynchronous Operations by Using a Command Object . 29

2.4 Creating, Adding, and Editing Data in a Disconnected Environment 30

Creating a DataSet . 30

Adding a DataTable to a DataSet . 30

Adding a Relationship between Tables within a DataSet . 30

Copying DataSet Contents . 31

Creating DataTables . 31

Creating and Using DataViews . 31

Representing Data in a DataSet by Using XML . 31

Generating DataAdapter Commands . 32

Populating a DataSet by Using a DataAdapter . 32

Updating a Database by Using a DataAdapter . 32

Resolving Conflicts between a DataSet and a Database by Using a DataAdapter 32

Performing Batch Operations by Using DataAdapters . 33

2.5 Managing XML with the XML Document Object Model (DOM) . 33

Modifying an XML Document by Adding and Removing Nodes . 34

Modifying Nodes within an XML Document . 34

Writing Data in XML Format from the DOM . 34

Working with Nodes in the XML DOM . 35

Handling DOM Events . 35

Modifying the XML Declaration . 35

2.6 Reading, Writing, and Validating XML by

Using the XmlReader Class and the XmlWriter Class . 36

Reading XML Data by Using the XmlReader Class . 36

Reading XML Element and Attribute Content . 36

Reading XML Data by Using the XmlTextReader Class . 37

Reading Node Trees by Using the XmlNodeReader Class . 37

Validating XML Data by Using the XmlValidatingReader Class . 37

Writing XML Data by Using the XmlWriter Class . 38

3.0 Printing in Windows Forms . 39

3.1 Managing the Print Process by Using Print Dialogs . 39

Printing in the .NET 2 .0 Framework . 39

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configuring Windows Forms Print Options at Run Time . 39

PrinterSettings Class . 39

Changing the Printers Attached to a User’s Computer in Windows Forms 40

Configuring the PrintPreviewDialog Control . 40

Setting Page Details for Printing by Using the PageSetupDialog Component 41

3.2 Constructing Print Documents . 41

Configuring the PrintDocument Component . 41

Printing a Text Document in a Windows Form . 42

Printing Graphics in a Windows Format . 42

Alerting Users to the Completion of a Print Job . 42

Enabling Security for Printing in Windows Forms . 42

3.3 Creating Customized PrintPreview Components . 43

Setting the Document Property to Establish the Document to Be Previewed 43

Setting the Columns and Rows Properties

to Establish the Number of Pages That Will Be Displayed . 43

Setting the UseAntiAlias property . 44

Setting the Zoom Property to Establish the Relative Zoom Level . 44

Setting the StartPage Property . 44

Adding Custom Methods and Events to a PrintPreviewControl . 45

4.0 Enhancing Usability . 45

4.1 Performing Drag and Drop Operations . 45

Application Usability . 45

Drag and Drop Operations . 45

Performing Drag and Drop Operations between Applications . 46

Performing Drag and Drop Operations by Using a TreeView Control . 47

4.2 Implementing Globalization and Localization for a Windows Forms Application 47

CultureInfo Class . 47

4.3 Implementing Accessibility Features . 48

4.4 Creating and Configuring Multiple Document Interface Forms . 49

Creating MDI Parent and Child Forms . 49

Identifying the Active MDI Child Form . 49

Arranging MDI Child Forms . 49

Creating a Window List Menu for a MDI Application . 50

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

4.5 Creating, Configuring, and Customizing

User Assistance Controls and Components . 50

4.6 Persisting Windows Forms between Sessions . 51

5.0 Implementing Asynchronous Programming

Techniques to Improve the User Experience . 51

5.1 Managing a Background Process by Using the BackgroundWorker Component 51

Asynchronous Programming . 51

The BackgroundWorker Component . 51

Running a Background Process . 53

Announcing the Completion of a Background Process . 53

Canceling a Background Process . 53

Reporting the Progress of a Background Operation . 53

Requesting the Status of a Background Process . 54

5.2 Implementing an Asynchronous Method . 54

Creating an Asynchronous Method . 54

Creating a New Process Thread . 55

6.0 Developing Windows Forms Controls . 56

6.1 Creating Composite Windows Forms Controls . 56

Windows Forms Controls . 56

Creating Composite Windows Forms Controls . 56

Creating Properties, Methods, and Events for Windows Forms Controls 57

Exposing Properties of Constituent Controls . 57

Creating Custom Dialog Boxes . 57

Configuring a Control to Be Invisible at Run Time . 58

Configuring a Control to Have a Transparent Background . 58

6.2 Creating a Custom Windows Forms Control by Inheriting from the Control Class 58

6.3 Creating an Extended Control by Inheriting

from an Existing Windows Forms Control . 59

7.0 Configuring and Deploying Applications . 60

7.1 Configuring the Installation of a Windows

Forms Application by Using ClickOnce Technology . 60

Deploying Applications . 60

Installing a Windows Forms Application on a Client

Computer or from a Server Using ClickOnce Technology . 61

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Network Installation . 61

Web Site Installation . 61

Local Client Installation . 62

Configuring the Required Permissions

on an Application by Using a ClickOnce Deployment . 62

7.2 Creating a Windows Forms Setup Application . 63

Creating a Windows Forms Application Setup Project . 63

Setting Deployment Project Properties . 63

Configuring a Setup Project to Add Icons During Setup . 63

Configuring a Conditional Installation Based on Operating System Versions 64

Configuring a Setup Project to Deploy the .NET Framework . 64

7.3 Adding Functionality to a Windows Forms Setup Application . 64

Adding a Custom Action to a Setup Project . 64

Installer Class . 65

Adding Error Handling Code to a Setup Project for Custom Actions . 65

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Abstract
This Exam Manual is designed to accomplish two goals. First, it is prepared to help familiarize you with the
inner workings of the new .NET Framework 2.0 and second, it is designed to help you in your preparation
to pass the Microsoft 70-526: Windows Based Client Development examination, which is considered to be
one of the most difficult Microsoft certification paths in the industry.

While studying this Exam Manual, you should continually ask yourself whether you Know and Understand the
material presented, or if you are simply just familiar with it. In order to pass the examination, you will need to
feel as if you know the .NET Framework backwards and forwards. If not, you chance the risk of having a very
minor part of the Framework throw off your work as a whole. By passing both the 70-536 and 70-526, you
will be certified as an official Microsoft Certified Technology Specialist on Windows development.

Tips
This exam requires a thorough understanding of the .NET Framework as well as the new capabilities specifi-
cally provided by the .NET 2.0 Framework. Depending on the programming language you select, you will
need to be familiar with the Visual Basic 2005, Visual C# 2005, or Visual C++ 2005. You will not be required to
write and compile code, but you should be familiar with syntax and structure of the language selected.

The .NET Framework 2.0 does not introduce a new development framework or paradigm, implementation
model, or scripting model from earlier releases of .NET Framework 1.0 or .NET Framework 1.1. However,
because it is much more than an incremental release, it introduces significant enhancements to the .NET
Framework. This manual does not cover each technical item in detail, but it provides a targeted overview
of the material in this exam and prepares you to understand the topics outlined in the Technology Spe-
cialist (TS) Exam 70-526: TS: Microsoft .NET Framework 2.0—Windows Based Client Development exam.

What to Know
The best way to prepare for this exam is to read all the material you can find related the .NET and .NET
Framework 2.0. Also, you should try to get as much hands on experience with the .NET framework as pos-
sible. This is accomplished in three ways: by Coding, Reading, and Studying. Microsoft provides a wonder-
ful web resource called the MSDN library that contains sample code, documentation, and other materials
that you can use to further your knowledge of the .NET Framework.

It’s a good idea to also participate in several large projects. Whether you do these projects at your office or
you simulate them on your own, it’s wise to involve yourself in the practical coding of large scale multi-
threaded .NET intensive apps that use a wide variety of new extensions to the .NET Framework you will
find in this Exam Manual. Also, you should check back at www.PrepLogic.com to see the newly upcoming
leading practice exam, which will be available for an extremely low price.

Lastly, it’s highly recommended that you familiarized yourself with the objectives of the exam at:
http://www.microsoft.com/learning/exams/70-526.asp

http://www.preplogic.com/products/video/view-video-training.aspx
http://www.PrepLogic.com
http://www.microsoft.com/learning/exams/70-526.asp

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

1.0 Creating a UI for a Windows Forms
Application by Using Standard Controls

1.1 Adding and Configuring a Windows Form
A Windows form is the basic foundational element in a .NET application. All Windows forms can be highly
customized and adapted to the user interface requirements. Controls are added to give forms functional-
ity. Controls can exist in either their default form or they can be highly customized by the developer. The
combination of Windows forms and controls allow for an almost unlimited range of applications.

Adding a Windows Form to a Project at Design Time
Once a project is created (unless the application is a console application), a form or multiple forms are
added to the project to serve as the basis for application functionality. The default form that is added to
the project when it is created is called Form1.

There are two general methods for adding forms to a project:

1. Add a form to a project at design time.

2. Add a form to an application at run time.

The standard method for adding a form to a project is to use the Visual Studio IDE:

1. Select the Project Menu.

2. Select Add Windows Form.

3. Select Windows Form from the dialog box.

4. Create a name for the form.

5. Click Add.

The new Windows form is now ready for configuration. Any number of new forms can be added
to the project.

The standard method for adding a form at runtime is through the code itself, which creates an instance
of the form:

 Visual Basic:
 Dim appForm as FormX
 appForm = new FormX()
 appForm.Show()

 C#:
 FormX appForm;
 appForm = new FormX();
 appForm.Show();

The Form class manages the Windows forms in a project. It can be used to create various Windows forms,
such as standard, borderless, and floating forms. The Form class manages the size, appearance, color, and
management features of Windows forms within an application. It also allows for the response to various
events on the form.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Form Class
Namespace: System.Windows.Forms

Assembly: System.Windows.Forms (in system.windows.forms.dll)

There are literally dozens of methods that are members of the Form class, which is one of the larger
classes in the .NET Framework.

Configuring a Windows Form to Control Functionality
The Form class allows for the easy configuration of form control functionality. Much of the functionality is
contained visually within the Properties window, which has controls for configuring accessibility, appear-
ance, behavior, data, design, focus, layout, and style. You can configure these areas through dropdown
boxes or by manually typing in a setting within the prescribed field.

1.2 Managing Control Layout on a Windows Form
Grouping and Arranging Controls
The use of controls is vital to the successful programming of Windows forms. A specialized group of con-
trols, called container controls, act as a container for other controls on the form, grouping them logically
for ease of programming and usability. Containers can be enabled and disabled. When a container control
is disabled, none of the controls that are a part of the container will be active.

The following are primary container controls that are found in the .NET 2.0 Framework:

Panel
The Panel container control forms a subsection of a form that allows for various other controls to be
placed on it. A Panel can be borderless, making it appear to be indistinguishable from the parent form, or
it can be assigned a border through the BorderStyle property.

The BorderStyle property has three important settings:

Setting Description

None No border. Panel seems integrated with parent form.

FixedSingle A single edge is present around the border.

Fixed3D A border with a three-dimensional appearance is present.

A Panel also is capable of scrolling. The AutoScroll property, when set to True, provides a scroll bar; when
set to False, a scroll bar is not present and only the visible controls within the Panel are accessible.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

GroupBox
A GroupBox is like a Panel in that it is a subdivision of the parent form; however, it does not have scrolling
capabilities and it does not have border settings or layout functionality like a Panel.

The main property for a GroupBox is a caption. The Text property controls the captioning for a GroupBox
and has two states: either text is added or an empty string exists, denoting no caption.

GroupBoxes are commonly used to group a set of similar controls, such as RadioButtons or CheckBoxes .

TabControl
The TabControl container control simply allows the programmer to group controls on tabs so that the user
can tab through various controls to perform actions on the form.

The main property of the TabControl container control is the TabPage property, which allows individual
configuration of the properties of each TabPage.

TabPage has both of the key properties of the Panel (Border Style and AutoScroll) and the Text property
of the GroupBox.

The TabControl container has four important properties:

Property Description

Appearance Indicates whether the tabs are displayed as buttons or regular tabs

Alignment Determines whether tabs are aligned to the top, bottom, left, or right of the control

Multiline Indicates whether more than one row of tabs is allowed

TabPages A collection of TabPage controls to be used by the TabControl property

FlowLayoutPanel
The FlowLayoutPanel container control is quite similar to the Panel container control. Its main difference is
that it dynamically allows for the repositioning of its enclosed controls as it is resized, both at design and
run time. Like the Panel control, it contains the AutoScroll property.

By default the direction of control is from left to right. This can be changed through the FlowDirection
property, which has four values:

1. LeftToRight

2. RightToLeft

3. TopDown

4. ButtomUp

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The WrapContents property allows the flow to be wrapped to the next column or row. If set to True, the
default setting will wrap automatically. If set to False, the controls will not wrap to the next column or row
and will be clipped.

The SetFlowBreak method allows you to set the flow break on a control.

The GetFlowBreak method, paired with the SetFlowBreak method, returns a True or False value when a
flow break has been set.

TableLayoutPanel
The TableLayoutPanel is a container control that allows you to establish cells in which controls can reside.
Each cell usually hosts a single control, although multiple controls are possible in advanced designs.

As with the Panel container control, the TableLayoutPanel contains the AutoScroll property.

The CellBorderStyle property controls the appearance of the cells within the table and has the following
five properties:

1. None

2. Single

3. Inset or InsetDouble

4. Outset or OutsetDouble

5. OutsetPartial

Other main properties of the TableLayoutPanel include:

Property Description

ColumnCount The number of columns in the table.

Columns A collection of the column styles of the table. In Visual Studio, this launches the
Columns and Rows Styles editor.

ColumnStyles A collection of ColumnStyles that represent the look and feel of a column.

GrowStyle Allows for the growing of the TableLayoutPanel through the following three settings:

1. AddColumns

2. AddRows

3. FixedSize

Rows A collection of the row styles of the table. In Visual Studio, this launches the
Columns and Rows Styles editor.

RowStyles A collection of Row Styles that represent the look and feel of a row.

The TableLayoutPanel calls one primary method, the Controls.Add method of System.Windows.Con-
trols, to add controls to the current TableLayoutPanel.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using the SplitContainer Control to Create Dynamic Container Areas
The SplitContainer control allows you to create a panel that is divided into two panels named Panel1 and
Panel2. Each panel is set by SplitterPanel controls, which are similar to Panel controls. The SplitContainer
has a BorderStyle property like the other panels.

The FixedPanel property allows a panel to be fixed, and has three possible settings:

1. Panel1

2. Panel2

3. None

The SplitContainer control has several unique properties:

Property Description

IsSplitterFixed Determines whether the splitter is fixed or can be adjusted.

Orientation Sets the horizontal or vertical orientation of the splitter.

Panel1/Panel2 Exposes the properties of SplitterPanel 1 or 2.

Panel1(2)Collapsed If collapsed, the setting is True; otherwise, it is False.

Panel1(2)MinSize Sets the minimum size of the panels.

SplitterDistance Sets the distance of the splitter from the top or left edge.

SplitterWidth Sets the width of the splitter.

1.3 Adding and Configuring a Windows Form Control

Using the IDE to Add a Control to a Windows Form or Other Container
Control of a Project at Design Time
There are several ways to add a control to a form at design time. The most popular ways are to access the
control in the Toolbox and do one of the following:

1. Double click the control.

2. Drag the control to the form.

3. Select the control and then double click the form.

4. Select a control and then draw it on the form via the mouse.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Adding Controls to a Windows Form at Run Time
To add a control in a Windows form at runtime requires the manual development of code. The following is
a general procedure to add a control at runtime:

1. Instantiate the new control via code.

2. Set the properties of the control in the code.

3. Add the new control to the form’s Controls collection.

Modifying Control Properties
Control properties can be modified in many ways in the .NET Framework. The four most common ways
consist of the following:

1. The Designer

2. The Properties window

3. SmartTags

4. The Document Outline window

Configuring Controls on a Windows Form at Run Time to Ensure that the
UI Complies with Best Practices
The end user must be kept in mind when configuring controls on a Windows form. If users have difficulty
understanding the application, their productivity will decrease and their frustration will increase. There-
fore, you must keep a couple considerations in mind when designing forms.

First, you should facilitate optimal human-computer interaction, which allows the user to interact ef-
fectively and efficiently with the application. Second, keep it simple, which means that the form should
contain only the essential controls that are needed to accomplish the given task. This includes strategically
placed controls and using controls with a layout that makes sense to users.

Consistency is another characteristic that facilitates user productivity. Without a consistent form through-
out the application, users will get frustrated and may make mistakes when using the application.

Creating and Configuring Command Controls
The purpose of command controls is to execute a task or to continue with an operation of the applica-
tion. One of the primary command controls is the Button control. When a user clicks on a Button control, a
series of code is executed.

The Button_Click method is the primary method and the Button.Click event handler is the primary
event handler.

You can use Mouse events instead of Button events.

The special cases of Accept or Cancel buttons are created through the DialogResult property of the But-
ton control. In the DialogResult property in the Properties window of the button, set the property to OK
for an Accept Button or to Cancel for a Cancel Button.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Creating and Configuring Text Edit and Display Controls
Labels are used to display read-only information on a Windows form. They can also be used as shortcut
keys for other controls. The Label control is used to configure Labels on the Windows form. You set the
Label’s properties in the Properties window.

LinkLabels are controls that create Web links, which open a Web page from the application. LinkLabels
have several properties:

Property Description

ActiveLinkColor Sets the active link color

LinkArea Sets the portion of the label that acts as a link

LinkBehavior The prescribed behavior of the link

LinkColor Sets the link’s color

LinkVisited Shows whether the link was visited

VisitedLinkColor Sets the visited link’s color

Using List-Based Controls
List-based controls organize data and present it in a clear manner to the user. The primary list-based
controls are the ListBox, the ComboBox, and the CheckedListBox. Each of these controls contains an Items
collection that provides organizational functionality to the specified control.

Items collections are collections of objects that are usually in the form of strings, although a string
is not required.

ListBox
The ListBox is the most basic of the list-based controls. It displays a list of items in a simple, concise man-
ner, and allows the selection of one or more items.

ComboBox
The ComboBox control contains the same basic functionality as the ListBox with the added functionality
of permitting an addition to the list through the manual typing of a string entry.
A ComboBox can allow for the following displays:

1. A List display

2. A Drop Down display

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

CheckedListBox
A CheckedListBox presents a list of checkable boxes to the user; the user can check one or more
of the boxes.

Configuring a WebBrowser Control
The WebBrowser control allows for the loading and displaying of Web pages and also provides critical
functionality for Web navigation. The WebBrowser control consists of literally dozens of methods and
properties to facilitate access to Web pages.

The main method of the WebBrowser control is the Navigate method. This simple method accepts a
string for the URL and loads the string into the WebBrowser control to load the Web page. The following
code demonstrates the use of the Navigate method:

 Visual Basic:

 WebBrowserAlpha.Navigate(“www.acm.org”)

 C#:

 webBrowserAlpha.Navigate(“www.acm.org”);

Upon navigating to the specified site, the WebBrowser control raises the DocumentCompleted event.

If code needs to execute after the Web page is loaded, the DocumentCompleted event should be handled.

Adding and Configuring Date Setting Controls
The DateTimePicker control allows users to set a date, a time, or both through a user interface on the form.
A user can use a drop-down box that displays a calendar to select a day, or they type in the time in a text area.

The DateTimePicker control has several properties:

Property Description

CustomFormat The custom display format used when the Format property is set to Custom

Format Sets the date and time display format

MaxDate The maximum date the control will accept

MinDate The minimum date the control will accept

Value The current DateTime value of the control

http://www.preplogic.com/products/video/view-video-training.aspx
http://www.acm.org
http://www.acm.org

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Displaying Images by Using Windows Forms Controls
Displaying images adds a certain aesthetic quality to an application, as well as functionality. The main
control to facilitate the displaying of images on a Windows form is the PictureBox control.

The PictureBox control can use images of the following six formats:

1. .bmp

2. .jpg/.jpeg

3. .gif

4. .png

5. .wmf (Metafiles)

6. Icons

The following are important properties of the PictureBox control:

Property Description

ErrorImage The alternate image to display if the specified image fails to load

Image The image to be displayed

ImageLocation The address to the image

InitialImage The image to be displayed while another image is loading

SizeMode Determines how the control will handle placement and sizing of the image

Images in a Windows form can also be organized. This may be necessary because multiple controls in the
application may require the same image.

The ImageList component creates a repository of images for use by the application. It has several properties:

Property Description

ColorDepth Sets the number of colors to use when rendering the images

Images The organized collection of images

ImageSize The size of each image in the ImageList

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The images from the ImageList can also be accessed at run time through the Images collection by using
the following code:

 Visual Basic:

 PictureBoxAlpha.Image = ImageListAlpha.Images(1)

 C#:

 pictureBoxAlpha.Image = imageListAlpha.Images[0];

Note: Images can be added to Buttons, CheckBoxes, RadioButtons, and other controls through the Image-
List properties. These images can be provided by the ImageList repository.

Configuring the NotifyIcon Component
The NotifyIcon component represents an icon in the system tray. The NotifyIcon component most often
is used with applications that run in the background. In many cases, this component is also used to show
balloon tips to the user:

 Visual Basic:

 NotifyIconAlpha.ShowBalloonTip(15)

 C#:

 notifyIconAlpha.ShowBalloonTip(15)

In this case, the number 15 indicates the number of seconds the balloon tip will be displayed on the screen.

The NotifyIcon component has several properties:

Property Description

BalloonTipIcon Sets the icon that will be displayed. The property can be set to display:

1. None

2. Info

3. Warning

4. Error

BalloonTipText Sets the text that will be displayed.

BalloonTipTitle Sets the balloon tip title.

ContextMenuStrip Sets the ContextMenuStrip associated with the particular instance of NotifyIcon.

Icon The displayed icon on the system tray.

Text The text displayed on the system tray when the mouse hovers over it.

Visible The status of the visibility of the icon on the system tray.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Creating Access Keys for Windows Forms Controls
When creating an access key, such as a Label control, you’ll need to follow a simple process to activate it:

1. Drag the control, such as a Label control, onto the form in a location close to the control with
which the access key will correspond.

2. Type in the Text of the control.

3. Place an ampersand in front of the letter or character that will act as the key.

4. Set the Use Mnemonic property to True.

5. Set the TabIndex to one less than the TabIndex property of the control being defined as an
access key.

Once these steps are completed, the access key will be fully operational.

1.4 Creating and Configuring Menus

Creating and Configuring a MenuStrip Component
MenuStrip controls are designed for the efficient display of ToolStripMenuItems. As such, they are derived
directly from the ToolStrip component, but are designed primarily to host the ToolStripMenuItems, which
can consist of:

1. Text

2. Images

3. Executable code

4. A combination of the above

The creation of a MenuStrip at design time is quite simple: it is dragged onto the form from the Toolbox.
Once on the form, an interface appears that allow you to create any number of menu items.

The configuring of menu items is quite simple as well. The Properties window contains various properties
for each type of control placed on the form; these can be changed through manual typing or through
drop-down boxes.

Several menu items can have their properties changed at once to ensure the uniformity of a particular
form property. This is done by holding the Ctrl key while simultaneously clicking on the menu items that
are to have their properties changed.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Changing the Displayed Menu Structure Programatically
Using code to change the Menu structure is quite simple, and allows for the instantaneous swapping of
menus on the user interface through the use of the Controls collection of System.Windows.Controls.
The following demonstrates the use of the Controls Add and Remove methods:

 Visual Basic:

 Me.Controls.Remove(MenuStripB)
 Me.Controls.Add(MenuStripC)

 C#:

 this.Controls.Remove(MenuStripB);
 this.Controls.Add(MenuStripC);

Creating and Configuring the ContextMenuStrip Component
The ContextMenuStrip component allows for the creation of context menus, which are the shortcut
menus that appear when an object is right-clicked. The ContextMenuStrip and the MenuStrip components
are quite similar, with the main differences being that the ContextMenuStrip does not have a top-level
menu and is not visible unless an object is right-clicked.

ContextMenuStrip controls can be added by using the ContextMenuStrip.Item.Add method and re-
moved by using the ContextMenuStrip.Item.Remove method.

Once added, a ContextMenuStrip must be associated with a particular control. This association is set, along
with other properties, in the Properties window of the specific control.

1.5 Creating Event Handlers for Windows Forms and Controls

Using the Windows Forms Designer to Create Event Handlers
Events are messages that indicate that something is happening within an application. The instant an event is
raised, objects within the application are given a chance to respond to the event through the use of their cor-
responding event handler, which in turn executes a method or procedure in response to the event.

Each class or control has its own corresponding events that relate to its functionality. On Windows forms,
each form or control within the form can raise an event based on actions such as user input to the form.
Primary events are created by the user through the mouse or keyboard.

Events that are raised by controls on a form contain two parameters:

1. Parameters carrying an object reference to the raising control

2. Parameters that carry event arguments

Event handlers are created through the Properties window of a control. The “Lightening Bolt” icon in the
Properties window facilitates the display of event handlers.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Managing Mouse and Keyboard Events and Programming a Windows
Forms Application to Recognize Modifier Keys
Most of the events that are handled through user input occur through the use of the mouse and keyboard.

Mouse events are standard events that occur in the same manner with most applications.

Mouse activities include:

1. Clicks or double clicks

2. Entering/leaving the control

3. Moving the control

4. Hovering over the control

5. Scrolling by using the mouse wheel

The most common events are the MouseClick and MouseDoubleClick events. These are simple events
that return Object references to the control that raised the event.

Movement events include the following actions with a control:

1. MouseEnter

2. MouseHover

3. MouseLeave

Once again, these are simple events that return Object references to the control that raised the event.
There are several events that pass MouseEventArgs. These include:

1. MouseDown: Mouse button pressed over a control.

2. MouseUp: Mouse button released over a control.

3. MouseMove: Mouse moved over a control.

4. MouseWheel: Mouse wheel moved.

The MouseEventArgs that are passed are standard and consist of the following properties:

Property Description

Button Gets which mouse button was pressed

Clicks The number of times the button was pressed

Delta The number of clicks the mouse wheel was rotated

Location The current mouse location

X The X coordinate location

Y The Y coordinate location

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Keyboard input controls can raise three events:

1. KeyDown

2. KeyUp

3. KeyPress

An instance of KeyEventArgs is raised upon the keyboard events. The basic three properties are based on
the standard modifier keys as follows:

1. Alt: The Alt key is pressed.

2. Control: The Ctrl key is pressed.

3. Shift: The Shift key is pressed.

Other properties of KeyEventArgs are as follows:

Property Description

Handled Indicates whether an event was handled

KeyCode Returns an enum value indicating the pressed key

KeyData Returns the value of the pressed key in conjunction with the corresponding
Ctrl, Alt, or Shift key

KeyValue An integer representing the KeyData property

Modifiers Gets or sets modifier flags indicating the combination of the corresponding
Ctrl, Alt, or Shift keys

SupressKeyPress Sets a value indicating whether the key event should be passed on to the control

Using the Windows Forms Designer to Create Default Event Handlers
A default event handler is a method that handles a given event for a control. It is created through the
Properties window by clicking on the “Lightening Bolt” icon and then using the Code Editor to add manual
code to execute when the event is raised. In good practice, a descriptive name is assigned to the default
event handler.

Connecting Multiple Events to a Single Event Handler
Multiple events can be assigned to the same event handler. The only requirement is that the signature
of the method must match the signature of the event. This can be set up in the same manner that single
events are created, through the Properties window.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Using the Code Editor to Override Methods Defined in the Base Class
Overriding a method that has been defined in a base class prevents that method from gaining functional-
ity. This creates a new implementation of the method to account for different functionality required in the
current instance of the class.

The implementation of an override is simple. In the program code type the following after the class decla-
ration but before the method declaration:

 Visual Basic:

 // Class Declaration
 Overrides
 //Method Declaration

 An example of this format would be:

 Public Class FormA
 Overrides
 AutoSize() As Boolean

 C#:

 // Class Declaration
 override
 // Method Declaration

 An example of this format would be:

 Public partial class FormA : Form {
 override
 public AutoSize{get; set; };
 }

Once this code is injected, the method is overridden.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

2.0 Integrating Data in
a Windows Forms Application

2.1 Implementing Data-Bound Controls
The integration of data in an application is absolutely essential for strategic data management. .NET 2.0
Framework’s data-bound controls make the manipulation of data easy and manageable, and allow for
advanced data functionality and usage. Data-bound controls can be set through code, smart tags, and
menus in the visual workspace.

Using the DataGridView Control to Display and
Update the Tabular Data Contained in a Data Source
The DataGridView has many purposes, but is commonly used to show the DataTable contents in a DataSet.
This is achieved through a simple set of code. To show the DataTable in a DataView perform the following:

1. Set the DataSource property of DataGridView to the specific DataSet.

2. Set the DataMember property to the name of the DataTable.

The code is straightforward:

 Visual Basic:

 DataGridViewX.DataSource = FinanceDataSet
 DataGridViewX.DataMember = “NewAccounts”

 C#:

 dataGridViewX.DataSource = financeDataSet;
 dataGridViewX.DataMember = “NewAccounts”;

Note: Smart tags can also be used on a DataGridView control by selecting the appropriate control when a
smart tag is displayed.

Using a Simple Data-Bound Control to
Display a Single Data Element on a Windows Form
The process of data binding is quite simple. Basic data binding places a single data element in a control.
Multiple sources of data can also be bound to a single control, such as in a drop-down menu. Both single
and multiple data sources are bound in the same manner.

Single data binding involves matching a single datum with a control.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The data can be bound to the control as in the following example, where a data element is bound to
a text box:

 Visual Basic:

 TextBoxX.DataBindings.Add(“Text”, newAccountsBindingSource, “New Accounts”)

 C#:

 textBoxX.DataBindings.Add(“Text”, newAccountsBindingSource, “New Accounts”);

This code binds the NewAccounts column from the DataTable to the required text box.

Implementing Complex Data Binding
to Integrate Data from Multiple Sources
Integrating data from multiple sources follows the same basic concepts as does binding a single data
source. Two basic properties are used with multiple data sources:

1. The DataSource property

2. The DataMember property

Two basic objects will serve as the object of the DataSource property:

1. A BindingSource object

2. A DataSet object

The DataMember property will usually be the corresponding table of the database.

As with single data binding, the binding source is set up and then the data is bound to the controls:

 Visual Basic:

 Dim newAccountsBindingSource As New BindingSource(FinanceDataSet,
 “NewAccounts”)

 DataGridViewX.DataSource = newAccountsBindingSource

 C#:

 BindingSource newAccountsBindingSource = new BindingSource(financeDataSet,
 “NewAccounts”);

 dataGridViewX.DataSource = newAccountsBindingSource;

Now, the DataGridView is bound to the table:

 Visual Basic:

 DataGridViewX.DataSource = FinanceDataSet
 DataGridViewX.DataMember = “NewAccounts”

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

 C#:

 dataGridViewX.DataSource = financeDataSet;
 dataGridViewX.DataMember = “NewAccounts”;

The complex data is now bound appropriately to the corresponding table.

Navigating Forward and Backward
through Records in a DataSet in Windows Forms
The BindingNavigator component is used to navigate forward and backward in a data source.

Through the BindingNavigator.BindingSource property, the following methods can be invoked:

1. MoveNext

2. MovePrevious

Defining a Data Source by Using a DataConnector Component
The purpose of using a DataConnector instead of a DataSet is to have the ability to redirect the applica-
tion to an alternate data source without the burden of having to redirect all of the current data binding
code, as seen in the previous section.

This is accomplished through the BindingSource component.

The following code sets up the binding source using the BindingSource component:

 Visual Basic:

 newAccountsBindingSource = New BindingSource(FinanceDataSet, “NewAccounts”)

 C#:

 newAccountsBindingSource = new BindingSource(financeDataSet, “NewAccounts”);

2.2 Managing Connections and Transactions

Configuring a Connection to a Database
A connection to a database can be created using four different methodologies:

1. Using the Connection Wizard

2. Using the Server Explorer

3. Using the Connection class

4. Using specific database Connection objects

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Enumerating through Instances of Microsoft SQL Server
One of the most useful data connection features of the .NET 2.0 Framework is the ability to easily set up
SQL instance discovery for ease of application connectivity. The process of SQL instance discovery
is as follows:

1. Instantiate the Instance property of the SqlDataSourceEnumerator class (in the System.Data.
Sql namespace).

2. Call the GetDataSources method.

3. Receive a returned DataTable with information on each SQL Server that is visible to the applica-
tion on the network.

The DataTable information contains the following:

Column Description

InstanceName Server instance

IsClustered Whether the server is part of a cluster

ServerName Name of the server

Version SQL Server version

Note: If a server is running a default instance, the InstanceName column will be blank.

Some SQL Servers may not show up in the DataTable for the following reasons:

1. Excessive network traffic

2. Security settings by administrators

3. Network timeouts

4. Firewall blockages

5. Protocol settings

6. Browser service not available

Opening an ADO.NET Connection to a Database
To open an ADO.NET connection, use the Open method. The process of opening a connection is as follows:

1. Ensure the Connection object contains a pointer string to a data source.

2. Ensure the Connection object contains appropriate connection information such as
connection credentials.

3. State the changes in the connection that are set up to monitor the open connection.

4. Note that information is passed from the server such as warnings when the connection is open.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Connection events are used for steps 3 and 4 of the above:

StateChanged events are raised to indicate the current state, open or closed, of the database.

InfoMessage events provide information from the server concerning the open connection.

Closing an ADO.NET Connection to a Database
by Using the Close Method of the Connection Object
The closing process of a data connection uses the Connection object’s Close method. It is implemented
in the following manner:

1. Create events for each closing object, such as a close button.

2. Implement the Close method to the event.

Note: When the Close method is called, all pending transactions and events are rolled back.

Protecting Access to Data Source Connection Details
Security is a critical concern to all database users and administrators. Although Windows authentication
may be used, other security methods can help fortify security.

The easiest security method to use is to set the Persist Security Information keyword to false, which ensures
that the credentials used in the connection are eliminated and not stored anywhere.

A second method is to encrypt the configuration file to prevent the interception of the data within that file.

Creating a Connection Designed for Reuse in a
Connection Pool and Controlling a Connection Pool
by Configuring Connection String Values Based on Database Type
Connection pools allow for the reuse of connections to reduce connection traffic, which fosters increased
performance in the application. Connection pools are separated by the following:

1. Connection strings

2. Application domains

3. Processes

To set up connection pooling, the following must be set in the connection string:

 Pooling = True

Each OLE DB provider has specific keywords to set up a connection pool, so a universal set of code is
not possible.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The following are possible connection pooling connection string keywords with their default values:

1. Connection Lifetime (0)

2. Connection Reset (True)

3. Enlist (True)

4. Load Balance Timeout (0)

5. Max Pool Size (100)

6. Min Pool Size (0)

7. Pooling (True)

2.3 Creating, Adding, and Editing
Data in a Connected Environment

Retrieving Data by Using a DataReader Object
The DataReader object facilitates the retrieval of data through the use of SQL statements. To retrieve data
using the DataReader object, follow these steps:

1. Set the CommandText property of the Command object to appropriate SQL statement(s).

2. Place semicolons between the various SQL statements.

3. Call the ExecuteReader method of the DataReader.

4. Call the NextResult method of the DataReader to view each additional statement’s
returned results.

If there is another set of data, DataReader.NextResult = True; otherwise, it is False and no more data is
to be retrieved.

Building SQL Commands
SQL commands can be built using the following methods:

1. In the Server Explorer

2. Directly in code

Creating Parameters for a Command Object
Parameters can be sent to:

1. SQL statements

2. Stored procedures

Parameters are used to change queries quickly in terms of specific criteria as they interact directly be-
tween the database and the application.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

There are three types of parameters:

1. Input

2. Output

3. InputOutput

The InputOutput parameter both sends and receives data during the execution of a command.

Note: The Input parameter is the default.

To create a parameter, perform the following:

1. Declare an instance of the Parameter class.

2. Set the name of the instance to coincide with the parameter name.

3. Set the data type expected.

4. Set the parameter direction, as indicated in the previous section.

5. Add the parameter to the Command object.

Performing Database Operations by Using a Command Object
Command objects contain one or more parameters that facilitate the movement of data to and from the
database and the application. Command objects allow SQL statements, functions, and stored procedures
to be run against the database to perform certain specified actions.

Note: There is a Command object for each of the data providers, and the data provider must match the
specific Command object for communications to occur between the data source and the application.
Common Command objects are as follows:

1. OdbcCommand

2. OleDbCommand

3. OracleCommand

4. SqlCommand

Command objects can perform many functions, including:

1. Executing SQL statements

2. Executing stored procedures

3. Executing functions

4. Performing catalog operations

5. Returning scalar values

6. Returning XML data

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Retrieving Data from a Database by Using a Command Object
Once the Command object is configured, it must be executed to perform its desired functionality.
Four execution methods can be used:

Method Description

ExecuteReader Runs SQL statements that return rows

ExecuteScalar Runs SQL statements that return a single value

ExecuteNonQuery For performing update or catalog operations where no data is returned

ExecuteXmlReader Runs SQL statements that return XML data

Performing Asynchronous Operations by Using a Command Object
An asynchronous process executes on a thread that is separate from the rest of the application.
The Command object has several methods that are designed for asynchronous operations:

Method Description

BeginExecuteNonQuery Asynchronous ExecuteNonQuery method

BeginExecuteReader Asynchronous ExecuteReader method

BeginExecuteXmlReader Asynchronous ExecuteXmlReader method

EndExecuteNonQuery Completes BeginExecuteNonQuery

EndExecuteReader Completes BeginExecuteReader

EndExecuteXmlReader Completes BeginExecuteXmlReader

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

2.4 Creating, Adding, and Editing
Data in a Disconnected Environment

Creating a DataSet
A DataSet can be created using two methodologies:

1. Graphically (using the DataSet Designer or the Toolbox and form)

2. Programmatically in code, as follows:

 Visual Basic:

 Dim FinanceDataSet As New DataSet (“FinanceDataSet”)

 C#:

 DataSet financeDataSet = new DataSet (“FinanceDataSet”);

Note: There are two kinds of DataSet objects:

1. Typed

2. Untyped

Adding a DataTable to a DataSet
DataTables can be added to a DataSet by using the following code:

 Visual Basic:

 Dim NewAccounts as New DataTable
 FinanceDataSet.Tables.Add(NewAccounts)

 C#:

 DataTable newAccounts = new DataTable();
 financeDataSet.Tables.Add(newAccounts);

Adding a Relationship between Tables within a DataSet
To add a relationship between tables within a DataSet, do the following:

1. Declare the DataRelation objects.

2. Provide the affected columns to the DataRelation Constructor.

3. Add the relationship to the Relations collection of the DataSet.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Copying DataSet Contents
To create a copy of the DataSet contents construct the following code:

 Visual Basic:

 Dim CopyOf FinanceDataSet as New Dataset
 CopyOfFinanceDataSet = FinanceDataSet.Copy

 C#:

 DataSet copyOfFinanceDataSet = new DataSet();
 copyOfFinanceDataSet = financeDataSet.Copy;

Creating DataTables
Creating a DataTable is simple: It is created by declaring an instance of the DataTable object.

The following code creates a DataTable:

 Visual Basic:

 FinanceDataTable as New DataTable(“FinanceData”)

 C#:

 DataTable financeDataTable = new DataTable(“FinanceData”);

Creating and Using DataViews
DataViews, which are a part of System.Data.DataView, interact with DataTable objects to allow data to
be viewed in data binding controls. DataViews allow for sorting, filtering, and modifying data.

To create a DataView, do the following:

1. Instantiate a new instance of DataView.

2. Pass the name of the table for the view.

3. Assign an instance of the DataView to DataTable.DefaultView for the default view.

Representing Data in a DataSet by Using XML
You can represent data in a DataSet using XML’s WriteXml method. There are two basic methodologies:

1. Call WriteXml to save all of the tables and table contents as XML.

2. Call WriteXml to save data from a specific table.

There are two ways to transport the XML data:

1. Save to a file.

2. Write to a stream.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Generating DataAdapter Commands
DataAdapter commands can be generated in two ways:

1. Automatically by using the CommandBuilder object

2. Programmatically in code

Populating a DataSet by Using a DataAdapter
DataAdapters are objects that are specific to data providers and contain information that allows interac-
tion with and between DataSets and DataTable objects.

A SELECT command is used by the DataAdapter to populate DataTables in a DataSet. The SELECT state-
ment controls the Insert, Delete, and Update statements.

There are two basic ways to configure the DataAdapter commands:

1. Create Command objects and assign them to specific DataAdapter properties.

2. Use the CommandBuilder object.

Updating a Database by Using a DataAdapter
The CommandBuilder can generate Insert, Delete, and Update statements for the DataAdapter.

Note: The SELECT statement used with the CommandBuilder must return at least one of the following:

1. One primary key

2. One unique column

Resolving Conflicts between a DataSet
and a Database by Using a DataAdapter
Two properties are used to assist in resolving conflicts between a DataSet and a database:

1. MissingMappingAction: Helps determine what to do when there is no matching table to fill in
the DataSet.

There are three enumerations for this property:

 1. Error
 2. Ignore
 3. Passthrough

2. MissingSchemaAction: Helps determine what to do when the expected schema is not present.
There are four enumerations for this property:

 1. Add
 2. AddWithKey
 3. Error
 4. Ignore

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Performing Batch Operations by Using DataAdapters
Batch processing can occur with a DataAdapter object through the use of the DataAdapter.Update-
BatchSize property.

Note: Setting UpdateBatchSize to 0 forces the batch size to default to the largest batch size the server
can tolerate.

2.5 Managing XML with the XML
Document Object Model (DOM)
The XML Document Object Model (DOM) presents a hierarchical representation of a flat XML file, which
facilitates easier navigation and searches as well as easier modification of the XML file.

The XmlDocument class is the primary class for the DOM.

XMLDocument class: Represents an XML document.

Namespace: System.Xml

Assembly: System.Xml (in system.xml.dll)

The XmlDocument class facilitates the reading of XML files into memory and allows for file manipulation
through a collection of XmlNode objects, which allow for searches, data retrieval, and data manipulation.

Reading XML Data into the DOM

An XML document is read using the following procedures:

1. Create a new instance of the XmlDocument class.

2. Load the XML file using the Load method.

3. Validate the XML against a schema using the XmlValidatingReader.

An XML file can be loaded through the following:

1. Stream

2. String

3. TextWriter

4. XmlWriter

Note: To preserve all white space in a document, ensure the following setting is set:

 XmlDocument .PreserveWhiteSpace = True

This setting compensates for the fact that only significant white space is preserved with the Load method.
The LoadXml method is used if no white space is to be preserved at all.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Modifying an XML Document by Adding and Removing Nodes
The XmlDocument class allows for the adding, copying, and removing of nodes.

The following are major methods for creating new nodes:

1. CreateComment

2. CreateDocumentFragment

3. CreateDocumentType

4. CreateElement

5. CreateProcessingInstruction

6. CreateTextNode

7. CreateXmlDeclaration

8. CreateWhitespace

9. CreateSignificantWhitespace

The following are methods for node insertion:

1. InsertBefore

2. InsertAfter

3. AppendChild

4. PrependChild

Modifying Nodes within an XML Document
The methods of the XmlDocument class and the XmlNode class are used to modify nodes within an XML
document. Through these classes the following can be achieved:

1. The value of existing nodes can be changed.

2. A set of child nodes can be replaced.

3. Individual nodes can be replaced.

4. Characters can be replaced (individual or a range).

5. Characters can be removed (individual or a range).

6. An attribute can be set.

7. An attribute can be updated.

Writing Data in XML Format from the DOM
Using the XmlDocument.WriteTo method, the content of an XmlDocument can be sent to the following:

1. File

2. Stream

3. Console

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Working with Nodes in the XML DOM
XML nodes are listed in an ordered fashion through the XmlNodeList class. This class has the following
methods to assist in the manipulation of XML nodes:

1. XmlNode.ChildNodes

2. XmlDocument.GetElementsByTagName

3. XmlElement.GetElementsByTagName

4. XmlNode.SelectNodes

Handling DOM Events
The XmlDocument class contains events that can be raised when specific changes occur to the node
structure of the XML document. These events are basic and straightforward:

1. NodeInserting

2. NodeInserted

3. NodeRemoving

4. NodeRemoved

5. NodeChanging

6. NodeChanged

Modifying the XML Declaration
The XmlDocument.CreateXmlDeclaration method can be used to create an XmlDeclaration node,
which is the first node in an XmlDocument instance.

The CreateXmlDeclaration method has the following parameters:

1. Version (1.0)

2. Encoding (represents the current encoding)

3. Standalone (document is independent of external resources)

Note: Version is always set to 1.0 because no other versions are currently supported.

Caution: The XmlDeclaration node must be set in the first position in an XmlDocument class; otherwise,
an exception will be thrown.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

2.6 Reading, Writing, and Validating XML by
Using the XmlReader Class and the XmlWriter Class
The XmlReader and XmlWriter classes are derived from the System.Xml namespace and facilitate the rapid
reading and writing of XML. They are both abstract classes that provide for basic parsing functionality.

Reading XML Data by Using the XmlReader Class
The XmlReader class provides rapid, forward-only access to an XML file. This access is in a non-cached
mode, and the entire document is read from beginning to end. The XmlReader class has several
major methods:

Method Description

Create Returns a new instance of XmlReader

GetAttribute Gets the value of the attribute

MoveToAttribute Moves to the attribute specified

MoveToElement Moves to the element with the current attribute

MoveToFirstAttribute Moves to the first attribute

MoveToNextAttribute Moves to the next attribute

Read Reads the next node in the stream

ReadInnerXml Returns all content in the current node excluding start and end nodes

ReadOuterXml Returns all content in the current node

Skip Skips the children of the current node

Note: The primary method for reading the content of an XML document is the Read method, which re-
turns a Boolean indicating the success of the read.

Reading XML Element and Attribute Content
The attributes of a specific node can be read using the XmlReader class. The class actually reads the at-
tributes backwards, providing the only instance where this class actually does read backwards.

Several methods allow for the navigation of attribute content:

1. MoveToAttribute: Moves the reader to a specified attribute in the node.

2. MoveToFirstAttribute: Moves the reader to the first attribute in the node.

3. MoveToNextAttribute: Moves the reader to the next attribute in the node.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Once one of these methods is called, the following are indicated:

1. Name of the attribute (through the Name property)

2. Value of the attribute (through the Value property)

The MoveToContent method allows nodes that do not contain content, including the following, to be
skipped over:

1. White space

2. Comments

3. Processing instructions

Note: The MoveToContent method ensures that the current node is a content node, because no action
will be taken if the node is not a content node.

Reading XML Data by Using the XmlTextReader Class
The XmlTextReader class reads text in a file or stream. Since it is an implementation of the XmlReader
class, all methods that apply to the XmlReader class also apply to the XmlTextReader class.

Reading Node Trees by Using the XmlNodeReader Class
The XmlNodeReader class, like the XmlTextReader class, is derived from the XmlReader class. Its pur-
pose is to read the content of an XmlNode object.

Each XmlNode object is part of the DOM subtree, and the XmlNodeReader is designed to navigate that
tree rapidly and effectively.

Validating XML Data by Using the XmlValidatingReader Class
In many cases it is necessary to validate the data against a certain schema. The XmlValidatingReader
class performs this task. It reads the document and validates each element against a specified schema to
ensure compliance.

Note: The XmlValidatingReader class acts as a wrapper to the current XmlReader instance.

The specific schema in this class is found in the ValidationType property, which has five different values:

1. Auto: Determines the most appropriate validation type

2. DTD: Document Type Definition

3. None: No validation type

4. Schema: XSD extensible schema definition

5. XDR: XML data reduced schema

Validation errors are handled through the ValidationEventArgs class, which has the following properties:

1. Exception

2. Message

3. Severity

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Writing XML Data by Using the XmlWriter Class
The XmlWriter class allows for the writing of XML to the following:

1. File

2. Console

3. Stream

4. Programmer-specified output

An instance of XmlWriter can create an instantiation of XmlWriterSettings, which allows for the setting
of the format of XML that is being written by the XmlWriter.

The XmlWriterSettings class has the following important properties:

1. Indent

2. IndentChars

3. NewLineChars

4. NewLineHandling

5. NewLineOnAttributes

To write elements to file outputs, the XmlWriter class is used. The following are the primary element-writ-
ing methods of the XmlWriter:

1. WriteComment

2. WriteElementString

3. WriteEndElement

4. WriteFullEndElement

5. WriteStartDocument

6. WriteStartElement

Note: The XmlWriter class can write simple or complex elements as follows:

 Simple Elements: Use the WriteElementString method.

Complex Elements: Use the WriteStartElement and WriteEndElement methods together.

To write to attributes, use the WriteAttributeString. However, note that this method can only write to ele-
ments that were created by the WriteStartElement method.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

3.0 Printing in Windows Forms

3.1 Managing the Print Process by Using Print Dialogs

Printing in the .NET 2.0 Framework
The .NET 2.0 Framework simplifies the often complex task of implementing printing functionality in an
application. By using several built-in classes and methods, the programmer can develop complex printing
functions quickly and easily that allow users to have the printing control they need.

Configuring Windows Forms Print Options at Run Time
The primary class used when implementing printing in a Windows Form is the PrinterSettings class,
which has several important components.

PrinterSettings Class
Namespace: System.Drawing.Printing

Assembly: System.Drawing (in System.Drawing.dll)

Most of the PrinterSettings class is implemented automatically through the use of various
printing components:

Component Description

PrintDocument Defines an object that sends output to a printer. The object is reusable.

PageSetupDialog Implements a dialog box that facilitates users’ choices of page settings
including margins.

PrintDialog Instantiates a print dialog box that configures a PrintTicket and a PrintQueue.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The PrintDialog component has several important properties that give the user printing functionality
within the Windows Forms:

Property Description

AllowCurrentPage Current Page button status

AllowPrintToFile Print to File box status

AllowSelection Selection option status

AllowSomePages Pages option status

Document Indicates which PrintDocument is associated with the current PrintDialog box

PrinterSettings The modifiable user settings with the current selected printer

PrintToFile Print to File checkbox status

The programmer can manually program the status of the selected PrintDialog properties within the ap-
plication. For example, if the programmer does not want the user to be able to print to file, the following
code can be implemented:

 Visual Basic:

 PrintDialogX.AllowPrintToFile = False

 C#:

 printDialogX.AllowPrintToFile = false;

Changing the Printers Attached to a User’s Computer in Windows Forms
The PrintDialog component, as described above, is the central authority on the selection of printers.
When the printer selection is made by the application user, the PrinterSettings property is updated. No
other action is necessary.

Configuring the PrintPreviewDialog Control
The PrintPreviewDialog control facilitates the viewing of a preview screen that allows the document to
be reviewed before printing. It operates in the following manner:

1. The Print method of the PrintDocument class is called.

2. The output is redirected to the screen instead of the printer.

3. The user can change settings on the preview screen.

4. The user can print from the preview screen or close the screen.

5. If print is chosen, the Print method of the PrintDocument component sends output to the
specified printer.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Setting Page Details for Printing
by Using the PageSetupDialog Component
The PageSetupDialog component facilitates the selection options of the pages for the current print job.
This component has several important properties:

Property Description

AllowMargins Margins are enabled or disabled.

AllowOrientation Landscape or portrait are enabled or disabled.

AllowPaper Paper source and size selections are enabled or disabled.

AllowPrinter Printer button is enabled or disabled.

Document The PrintDocument associated with the current print job.

MinMargins The minimum margins that the user is permitted to select.

Note: The PageSetupDialog must be associated with a specific instance of the PageSettings class in
order to show the PageSetupDialog box.

3.2 Constructing Print Documents

Configuring the PrintDocument Component
The PrintDocument component is the representative of the current document of the current print job. It
cannot actually be seen at run time, but it runs in the background to facilitate the printing of a document.

The PrintDocument component starts the Print method and at the same time raises one or more
PrintPage events, which is the primary event in the printing process. The event handler contains several
PrintPageEventArgs, as follows:

Properties Description

Cancel If set to True, the print job is cancelled.

Graphics Renders the drawing surface content to the printed page.

HasMorePages Indicates if more pages are to be printed in the document.

MarginBounds Calls the Rectangle object to represent the page within the set margins.

PageBounds Calls the Rectangle object to represent the total area of the current page.

PageSettings Gets the PageSetting object for the current page to be printed.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Printing a Text Document in a Windows Form
You can print text by using the Graphics object of the PrintPageEventArgs. The DrawString method of
the Graphics object renders a string of text to the printer.

The following must be specified when sending text to the printer through this method:

1. The specific font to be used

2. The text

3. The Brush object

4. The printing coordinates

Printing Graphics in a Windows Format
The PrintPageEventArgs Graphics object is used to render graphics to the printer in the same way that
graphics are rendered to the screen.

To print simple graphics, the Graphics object is used.

To print complex graphics, the GraphicsPath object is used.

To print images, the DrawImage method of the Graphics object is used.

Alerting Users to the Completion of a Print Job
The PrintDocument EndPrint event is used to create a notification to the user that the current print job is
completed. Once a print job is completed, the PrintDocument.EndPrint event is raised.

Enabling Security for Printing in Windows Forms
The .NET 2.0 Framework considers printing a secured activity; therefore, the PrintingPermission class is
used to control printing permissions through the use of four PrintingPermissionLevel values:

Values Description

AllPrinting Access to the specified printer is not restricted.

DefaultPrinting Enables printing to the default printer.

NoPrinting Blocks access to the printer.

SafePrinting Printing is only allowed through a printer dialog box.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

3.3 Creating Customized PrintPreview Components

Setting the Document Property to
Establish the Document to Be Previewed
In order to create customized print preview applications, the PrintPreviewControl is used in lieu of the
PrintPreviewDialog that was demonstrated in the previous section. The PrintPreviewControl calls the
PrintDocument.Print method and sends the output to the control instead of the printer.

It has several properties:

Property Description

AutoZoom Determines whether the Zoom property is automatically adjusted

Columns Sets the pages that are displayed horizontally across the screen

Document The current instance

Rows Sets the pages to be displayed vertically across the screen

StartPage Sets the first page to be displayed

UseAntiAlias Sets the value that indicates whether anti-aliasing is used

Zoom Sets the zoom level

The Document property is set to represent the PrintDocument that is currently being used and associates it
with the PrintPreviewControl. The PrintPreviewControl.Document is set in the Properties window.

Setting the Columns and Rows Properties to
Establish the Number of Pages That Will Be Displayed
Setting the Columns and Rows properties is a simple process. The following code demonstrates the ease
of setting these two properties:

 Visual Basic:

 PrintPreviewControlX.Rows = 2
 PrintPreviewControlX.Columns = 5

 C#:

 printPreviewControlX.Rows = 2;
 printPreviewControlX.Columns = 5;

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Setting the UseAntiAlias property
The UseAntiAlias property allows you to smooth the edges of drawings to improve their appearance. It is
a Boolean value and can be set as follows:

 Visual Basic:

 PrintPreviewControlX.UseAntiAlias = True

 C#:

 printPreviewControlX.UseAntiAlias = true;

Setting the Zoom Property to Establish the Relative Zoom Level
The size of a page in the Zoom property of the PrintPreview control can be set based on 1.0 being the
full size of the page. Values below 1.0 represent sizes lower than 100% and values above 1.0 indicate sizes
above 100%. For example, a value of 0.5 indicates that the page will be represented at 50% of its size,
whereas a value of 5 indicates that the page will be displayed at 500% of its original size.
The control can be set to 50% of the page size through the following code:

 Visual Basic:

 PrintPreviewControlX.Zoom = .5

 C#:

 printPreviewControlX.Zoom = .5;

The AutoZoom property allows the document to be automatically zoomed when the PrintPreviewCon-
trol is zoomed. Setting AutoZoom to True activates the auto-zoom capability.

Setting the StartPage Property
The StartPage property simply sets the first page to be displayed in the print preview. The following code
demonstrates the StartPage property, setting the start page to 2:

 Visual Basic:

 PrintPreviewControlX.StartPage = 2

 C#:

 printPreviewControlX.StartPage = 2;

Note: This property can only be set at run time.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Adding Custom Methods and Events to a PrintPreviewControl
The PrintPreviewControl can be customized through the addition of methods and events programmed
by the developer. This flexibility adds value to the application through the creativity of the developer. The
following demonstrates how methods and events are added:

 Visual Basic:

 Public Class NewPrintCapabilities
 Inherits PrintPreviewControl
 ‘ Add new method or event here
 End Class

 C#:

 public class NewPrintCapabilities : PrintPreviewControl {
 // Add new method or event here
 }

As can be seen, the creative possibilities are vast through the sub-classing of PrintPreviewControl.

4.0 Enhancing Usability

4.1 Performing Drag and Drop Operations

Application Usability
The human-computer interaction of an application is a critical dynamic that can ultimately determine the
viability of the application in the eyes of the user. Therefore, the application’s usability must be a major
consideration when designing and coding.

The .NET 2.0 Framework provides many features that assist in the development of a usable application. In
turn, the application will foster increased productivity as well as lower learning curves for users, resulting
in a high demand for the application. The .NET 2.0 Framework makes it easy to implement and enhance
usability while the original code is being developed, saving both time and programming effort.

Drag and Drop Operations
The concept of drag and drop stems from the origins of Windows. It is a feature that is expected from all
Windows applications. Programmatically, drag and drop operations are event-driven operations.

The initiation of drag and drop events starts with the DoDragDrop method. This method determines the
control under the cursor’s current location on the screen. It also validates the drop target as a valid target.
The DoDragDrop method returns a value from the DragDropEffects enumeration, which is the final
result of the drag and drop operation. The returned value will be one of the six DragDropEffects values
found on the next page:

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

DragDropEffects Description Value

All Data is copied, removed from the drag source, and then
scrolled in the drop target.

–2147483645

Copy Data is copied to the drop target. 1

Link Data from the source is linked to the drop target. 4

Move Data is moved to the drop target. 2

None The data is not accepted by the drop target. 0

Scroll Scrolling will or already is happening in the drop target. –2147483648

The changes in the position of the mouse are tracked by the DoDragDrop method:

Raised Event Action

DragDrop The mouse button is released over the target control.

DragEnter The mouse enters a new target control area.

DragLeave The mouse moves out of the current window.

DragOver The mouse moves but it stays within the current target control.

GiveFeedback The drop target is valid.

QueryContinueDrag Determines whether to continue, drop, or cancel the drag.

The QueryContinueDrag event can raise three different possibilities:

1. DragAction.Continue

2. DragAction.Drop

3. DragAction.Cancel

Note: The DragOver and GiveFeedback events should be used together so that up-to-date position infor-
mation is given as the curser moves over the target.

Performing Drag and Drop Operations between Applications
No special code is required to facilitate drag and drop operations between applications, thanks to the
inherent functionality of the .NET 2.0 Framework. The only action taken upon the target control is to sync
it to the corresponding DoDragDrop method in the following two ways:

1. A drag effect listed in the DoDragDrop method call must be present.

2. The data format must be the same as in the DoDragDrop method call.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Performing Drag and Drop Operations by Using a TreeView Control
The TreeView class allows for the displaying of hierarchical data in the form of a tree.

TreeView Class

Namespace: System.Web.UI.WebControls

Assembly: System.Web (in system.web.dll)

TreeView controls are composed of nodes, each of which is represented by a TreeNode object.

The implementation of drag and drop operations is different than in regular operations. Drag operations
are implemented on individual TreeNodes. Once implemented, the ItemDrag event is raised, passing an
instance of ItemDragEventArgs (which references the TreeNode) to the handling method. The reference
to the TreeNode is then copied directly to the DataObject in the DoDragDrop method.

4.2 Implementing Globalization and
Localization for a Windows Forms Application
The globalization and localization features of the .NET 2.0 Framework allow for the displaying of data that
will be acceptable to various cultures, making the applications, in essence, globally ready.

Globalization: Formatting data with formats that are culturally appropriate and acceptable.

Localization: Retrieving data that is culturally appropriate and acceptable.

The culture of the application can be changed through the use of the CultureInfo class, which provides
information about a specific culture.

CultureInfo Class
Namespace: System.Globalization

Assembly: mscorlib (in mscorlib.dll)

The information specified by the CultureInfo class includes the following:

1. Language

2. Sublanguage

3. Country/Region

4. Calendar

5. Conventions

The CultureInfo class designates a unique name for each culture based on the RFC 1766 standard for
Windows 2000 and XP, and RFC 3066 for Windows Vista.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The current culture can be set in the application by setting the CurrentThread.CurrentCulture property,
as demonstrated in the following code, which sets the current culture to traditional Chinese:

 Visual Basic:

 System.Threading.Thread.CurrentThread.CurrentCulture = New _
 System.Globalization.CultureInfo(“zh-Hant”)

 C#:

 System.Threading.Thread.CurrentThread.CurrentCulture =
 new System.Globalization.CultureInfo(“zh-Hant”);

Several languages, such as Arabic, implement writing from right to left instead of left to right. The .NET 2.0
Framework allows for an easy transition in text direction through the RightToLeft property, which can be
set to the following:

1. Yes

2. No

3. Inherit

The use of the Inherit setting allows the RightToLeft property to determine the value set by the parent
control. This value will determine whether the Yes or No setting will apply.

4.3 Implementing Accessibility Features
Allowing users with a variety of physical needs to access and use the application is the heart of the acces-
sible design paradigm. An accessible design begins in the initial development phase of the application
and continues throughout the application coding process. At a minimum, the design should include the
ability to use accessibility aids and to accept input and send output through a variety of methodologies in
addition to the standard mouse and keyboard, allowing for user flexibility and ease of use.

The use of standard system settings is a major part of designing an accessible application. These settings
include such aspects as font size, display sizes, system colors, icon size, and so forth. The System.Drawing
namespace contains many of the classes that contain various user interface options.

The .NET 2.0 Framework provides a series of accessibility properties for Windows Forms Controls, which
interact with many accessibility methodologies:

Property Description

AccessibleDefaultAction-
Description

Presents the default action description of a particular Windows control

AccessibleDescription Presents a description that is sent to the accessibility aid

AccessibleName Presents a name that is sent to the accessibility aid

AccessibilityObject Presents information about a Windows control to the accessibility aid

AccessibleRole Presents the role that is sent to the accessibility aid

Note: Accessibility properties can be set in the Properties window at design time.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

4.4 Creating and Configuring
Multiple Document Interface Forms

Creating MDI Parent and Child Forms
The .NET 2.0 Framework allows for the easy creation of applications that facilitate managing and work-
ing on several documents simultaneously. This is performed through the parent/child form model, where
there is a single parent form that contains and manages several child forms. Multiple parent forms are
permitted as well.

The primary, or main, form of the application is always the parent form, which is created before the child
forms. This form is created by setting the IsMDIContainer property to True in the Properties window.

The child forms usually contain individual documents and data associated with those documents. Child
forms are created after the parent form by adding subsequent forms to the application with their cor-
responding controls. The child forms are controlled by the parent form by creating a new instance of the
child form in the parent form and then simply setting the MdiParent property to the parent form object.

Identifying the Active MDI Child Form
Identifying the active MDI child form is quite simple. The ActiveMDIChild property of the parent form can
be set to reference the last form opened as follows:

 Visual Basic:

 Dim demoForm as Form
 demoForm = Me.ActiveMDIChild

 C#:

 Form demoForm;
 demoForm = this.ActiveMDIChild;

Arranging MDI Child Forms
In order to arrange the forms in an application, the LayoutMdi method is called, which takes parameters
from the MdiLayout enumeration. These parameters align the child forms with the parent form in terms
of cascading, tiling, or arranging icons, as follows:

Member Description

ArrangeIcons Icons are arranged.

Cascade Windows are cascaded.

TileHorizontal Windows are tiled horizontally.

TileVertical Windows are tiled vertically.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Creating a Window List Menu for a MDI Application
A window list is a list of all of the current windows in the application, which allows users to select a win-
dow and have it activated in the parent form.

The implementation of a window list is simple. Just drag the MenuStrip component onto the parent form
and create a top-level menu item. Then, set the MdiWindowListItem property in the Properties window.

Once configured, the child forms will populate the list entries.

4.5 Creating, Configuring, and Customizing
User Assistance Controls and Components
The .NET 2.0 Framework provides many built-in components and controls that allow for the design of
user-friendly applications that will enhance the usability of the application.

The following table contains the main user assistance controls:

Control Description

ProgressBar Allows for the visual indication of the progress of an operation through the Maxi-
mum, Minimum, Step, and Value properties

PropertyGrid Allows the user to set the properties of controls at run time through the Property-
Sort enumeration values of Alphabetical, Categorized, CategorizedAlphabeti-
cal, and NoSort

StatusStrip Allows for the display of application status information through the use of Tool-
Strip controls and ToolStripItems

The following table contains the main user assistance components:

Component Description

ErrorProvider Allows feedback for errors when an error condition appears for a specific control

ToolTip Allows for the setup of tool tips for various controls that appear as pop-ups when
the mouse hovers over a specific control

HelpProvider Allows for the setting of Help properties with the Help namespace using the Help-
Provider component

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

4.6 Persisting Windows Forms between Sessions
Property values are permitted to be persisted between user sessions in the .NET 2.0 Framework, and can
be accessed and changed at run time. This feature helps eliminate redundant code by maintaining com-
mon settings such as font sizes, colors, and the like.

To persist a setting, the setting must be given a unique name and value in the application. It is then bound
to a particular property that needs to persist between user settings.

The Settings Editor is used to persist property values through four properties:

1. Name

2. Type

3. Scope

4. Value

These settings can be accessed or changed at run time.

5.0 Implementing Asynchronous Programming
Techniques to Improve the User Experience

5.1 Managing a Background Process by Using the
BackgroundWorker Component

Asynchronous Programming
The inherent complexity of today’s programs requires applications to run operations concurrently, which
can cause the applications to slow, lock up, or become unresponsive. In many cases, time-intensive opera-
tions must compete for resources with the user interface, causing noticeable performance issues in the
application. Such operations include complex scientific and financial calculations, complex query process-
ing, and the downloading of large files.

The purpose of asynchronous programming techniques is to reduce the burden on the system by en-
abling the time-intensive operation to run asynchronously (in the background), which frees up resources
to allow the application to operate in a normal, responsive manner. Visual Studio 2005 introduces a new
component, the BackgroundWorker component, which significantly eases the burden of implementing
asynchronous techniques within an application.

The BackgroundWorker Component
The primary facilitator of asynchronous programming in Visual Studio 2005 is the BackgroundWorker
component, which allows designated operations to operate on a thread that is independent of the
threads used by other processes of the application.

BackgroundWorker Class

Namespace: System.ComponentModel

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Assembly: System (system.dll)

Methods of the BackgroundWorker Class:

Method Description

ReportProgress Raises the ProgressChanged event.

RunWorkerAsync The primary method of the BackgroundWorker component. It executes back-
ground operations and starts the DoWork event on a separate, dedicated thread.

CancelAsync Initiates a request to cancel a background operation.

Properties of the BackgroundWorker Class:

Property Description

CancellationPending Indicates that the CancelAsync method was called to cancel a
background operation

IsBusy Indicates whether an asynchronous operation is running

WorkerReportsProgress Indicates whether there are report progress updates

WorkerSupportsCancellation Indicates whether an asynchronous operation can be cancelled

Events of the BackgroundWorker Class:

Event Description

DoWork Triggered by a call to the RunWorkerAsync method. It causes the op-
eration to operate on a dedicated thread.

ProgressChanged Triggered by the ReportProgress method to report the progress of an
asynchronous operation.

RunWorkerCompleted Indicates completion or cancellation of the background operation.

Note: BackgroundWorker components cannot perform multithreaded operations in more than
one AppDomain.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Running a Background Process
Running a background process is not complicated. Place the BackgroundWorker component onto the
Windows form by simply dragging it from the Toolbox, then create the DoWork event followed by the
code of the operation that needs to run asynchronously.

Whenever the operation needs to be run in an asynchronous manner throughout the program, the Run-
WorkerAsync method is called. For example, for a specific instance of the BackgroundWorker called X,
which runs a certain operation X, the operation can be run asynchronously by implementing the following
method calls:

 Visual Basic:

 BackgroundWorkerX.RunWorkerAsync ()

 C#:

 backgroundWorkerX.RunWorkerAsync();

Note: Many instances of BackgroundWorker can be implemented and called in an application. A unique
instance of the component can be created for each process type, with a separate name for each compo-
nent implementing the asynchronous process (for example, BackgroundWorker1, BackgroundWorker2,
and so forth).

Announcing the Completion of a Background Process
The RunWorkerCompleted event is triggered upon the following three instances of a process:

1. The process is cancelled.

2. The process is completed.

3. An exception has been raised during the process.

The use of the RunWorkerCompleted event enables the program to notify the application user of the
completion/cancellation/exception of the background process.

Canceling a Background Process
The BackgroundWorker component has a property called WorkerSupportsCancellation, which the
programmer can implement manually into the application to allow the BackgroundWorker to support
the cancellation of the asynchronous operation.

When coding the cancellation of the asynchronous operation, the CancelAsync method of the Back-
groundWorker component is called, which then sets the CancellationPending property to True. When
the asynchronous operation is processing, the CancellationPending property is set to False.

Reporting the Progress of a Background Operation
The ReportProgress method of the BackgroundWorker component allows the application to be noti-
fied of the progress of the asynchronous operation. This is useful for asynchronous operations that may be
running for quite some time.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The ReportProgress method triggers the ProgressChanged event, which allows the percentage of
progress to be received and reported by the ReportProgress method through a parameter sent to the
method via the triggered event.

Requesting the Status of a Background Process
The IsBusy property of the BackgroundWorker component allows you to determine the status of the
background process. The property has two possible values, True and False, where True indicates that a
background process is currently running. This property can be used to test for a process and perform an
operation based on the Boolean status of the process. For example, if the background process is running,
and a need to cancel arises, the following code can be implemented:

 Visual Basic:

 If BackgroundWorkerX.IsBusy
 BackgroundWorkerX.CancelAsync()
 End If

 C#:

 if backgroundWorkerX.IsBusy { backgroundWorkerX.CancelAsync(); }

5.2 Implementing an Asynchronous Method

Creating an Asynchronous Method
One way to invoke an asynchronous process, other than using the BackgroundWorker component, is
through the creation of an asynchronous method. This can be done primarily through the use of a Del-
egate, which is a class that acts like a function pointer with type-safe characteristics.

A Delegate has the ability to call any method synchronously or asynchronously, making it a good candi-
date for an alternative to the BackgroundWorker component.

The following methods can be used by a Delegate to create an asynchronous process:

Method Description

BeginInvoke Starts a corresponding asynchronous method on an independent thread. Returns
instances of IAsyncResult, which monitors the asynchronous call.

EndInvoke Ends the asynchronous method thread and gets the results of that method for
the application. Receives the result of IAsyncResult to determine when the method
is finished.

The BeginInvoke method requires several parameters in many cases:

1. The parameters of the Delegate represented method

2. The AsyncCallback Delegate, which references the method to be called

3. The user-defined object that references the asynchronous call

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

In some instances, depending on the particular method, “Nothing” in Visual Basic or “null” in C# are
passed in lieu of parameters.

With an asynchronous method, BeginInvoke and EndInvoke methods can be used on the same thread, or
can be called on different threads, with the EndInvoke method being called once the operation is complete.

Creating a New Process Thread
Threads enable the programmer to exercise more control over asynchronous processes than with either
the BackgroundWorker component or Delegates.

The central component is the Thread object, which is an independent thread of execution that can run
concurrently with many threads. However, the more threads that are running the more system perfor-
mance will be degraded.

The Thread object can call two methods:

1. Thread.Start

2. Thread.Abort

Once a thread is aborted it cannot be restarted.

Two issues to watch out for when creating and running asynchronous process threads are:

1. Deadlocks

2. Race conditions

Thread synchronization can be used to protect two or more threads from trying to access the same
resource at the same time.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

6.0 Developing Windows Forms Controls

6.1 Creating Composite Windows Forms Controls

Windows Forms Controls
The inclusion of forms controls allows the user of the application to easily operate within the form, giving
the application true Windows functionality and ease of use. The .NET platform allows programmers to
rapidly create Windows forms controls through one of four different control creation methods:

1. The use of built-in .NET controls

2. The creation of composite controls by the programmer

3. The creation of custom controls by the programmer

4. The creation of extended controls by the programmer

As you can, the built-in controls of .NET can be used by the programmer, or the programmer can combine
or extend built-in controls, or create new ones altogether. This type of flexibility is a powerful feature of .NET
and allows a wide range of new or unique controls to be added to a form for precision in functionality.

Creating Composite Windows Forms Controls
Composite controls are made by combining existing Windows controls. They inherit directly from the
UserControl class.

UserControl Class

Namespace: System.Windows.Forms

Assembly: System.Windows.Forms in System.Windows.Forms.dll

UserControl extends ContainerControl, and thus inherits the standard positioning in a user control as
well as the mnemonic handling code that is in a user control.

The creation of composite controls is quite simple, because they inherit directly from the UserControl class:

 Visual Basic:

 Public Class controlOne
 Inherits UserControl
 ‘insert functionality code
 End Class

 C#:

 Public class controlOne : UserControl {
 // insert functionality code
 }

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Creating Properties, Methods, and Events for Windows Forms Controls
Properties
To add a property to a control, do the following:

1. Create the property definition.

2. Code the functionality.

3. Set the property value in a private variable.

Methods
Methods are added to controls in exactly the same manner that a method would be added to any type of
class or form: within the class declaration of the Code window through the method declaration and the
method body.

Events
To add an event to a control, Visual Basic and C# use differing methodologies.

Visual Basic: Use the Event keyword followed by the name and signature of the specific event.

C#: Specify an explicit delegate that indicates the signature and the event keyword.

Exposing Properties of Constituent Controls
Constituent controls are subordinate to composite controls. They are created the same way their parent
composite controls are created and contain the functionality contained within the parent composite control.

Constituent controls are not available to classes within other assemblies, even within the same set of code;
therefore, they must be either recoded in classes within other assemblies or exposed in other assemblies.
This can be done by wrapping the constituent control in a property declaration and then having the com-
posite control’s code implemented through the get and set values of the constituent control’s property.

Creating Custom Dialog Boxes
The purpose of a dialog box is to prompt the user to input information into the application. There are two
types of dialog boxes:

1. Built-in .NET dialog boxes

2. Custom developed dialog boxes

Custom dialog boxes are created by using the Dialog Box template, which can be accessed through Proj-
ect Menu > Add New Item > Dialog Box template. This template allows you to create dialog boxes that
collect specifically formatted information from the application user.

There are two distinct ways a dialog box can be displayed:

1 . Modally: Pauses the execution of the program until the dialog box is closed

2 . Modelessly: Permits the program execution to continue while open

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configuring a Control to Be Invisible at Run Time
Making controls invisible at run time prevents them from being accessed by the application user; however,
they are still available for use by the application itself. Making them invisible can be advantageous when
user intervention in the application is not needed or warranted.

Configuring the invisibility of the control is a simple process in .NET. The Visible property of the control is
simply set to false, as in the following examples:

 Visual Basic:

 controlOne.Visible = False

 C#:

 controlOne.Visible = false;

Note: To be certain that the control is set to be invisible at the start of the application, the control’s Load
event handler must have the control’s Visible property set to false within the event handler.

Configuring a Control to Have a Transparent Background
The creation of a control with a transparent background is quite simple in .NET. The BackColor property of
the control is set to Color.Transparent, as in the following code:

 Visual Basic:

 controlOne.BackColor = Color.Transparent

 C#:

 controlOne.BackColor = Color.Transparent;

6.2 Creating a Custom Windows Forms
Control by Inheriting from the Control Class
Custom controls are customizable by the programmer and give the greatest degree of flexibility in terms
of functionality of the control. Custom controls must be developed exclusively through the original code
of the programmer.

Custom controls inherit directly from the Control class, which gives the custom control its basic function-
ality in the context of the current application. This includes the properties such as Visible and BackColor
that were discussed previously. The targeted functionality of the custom control, however, must be pro-
vided by the programmer.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

The namespaces used for custom control development are the following:

1. System.Drawing

2. System.Drawing.Drawing2D

3. System.Drawing.Imaging

4. System.Drawing.Printing

5. System.Drawing.Text

The most widely used classes to create custom controls are the Graphics class and the Drawing class, which
present the drawing surface of the control and allow for added functionality through their many methods.

6.3 Creating an Extended Control by
Inheriting from an Existing Windows Forms Control
Extended controls are custom-developed controls that build upon, or extend, current .NET controls. The
benefit of creating extended controls is that the original functionality of the control is maintained with
the addition of new methods, properties, and in some cases, a new appearance.

The process of extension is basically the same as extending any object in the .NET framework. A class is
created, which inherits the control that is to be extended.

The following code demonstrates the creation of a class that inherits the control that is to be extended:

 Visual Basic:

 Public Class NewCheckBox
 Inherits System.Windows.Forms.CheckBox
 End Class

 C#:

 public class NewCheckBox : System.Windows.Forms.CheckBox { }

The above new classes will allow the CheckBoxes to have the same behavior and properties as the Check-
Box class, with the addition of new properties, methods, and appearances as provided by the programmer.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

7.0 Configuring and Deploying Applications

7.1 Configuring the Installation of a Windows
Forms Application by Using ClickOnce Technology

Deploying Applications
The best application in the world will create frustration for the user if it does not deploy rapidly, accurately,
and correctly. The ease of deployment is paramount for a successful application.

In the past, users have been forced to deal with many issues that make the deployment of applications
difficult, such as installing applications without admin rights, configuring the application to be able to
receive security patches, installing updates and upgrades, and configuring the application to run on a
shared drive or application server. These issues are compounded by the difficulty of getting past applica-
tions to launch from a remote location, such as a file server.

The .NET 2.0 Framework introduces a new technology to assist developers in creating a deployment
strategy that is not only easy for the users to launch, but also easy for developers to implement in their
software. This new technology is called ClickOnce technology.

ClickOnce technology provides several key benefits for deployment:

1. Applications are configured for easy updates or self-updates.

2. Users without administrative rights can install the applications.

3. The new application will install in an isolated manner, eliminating the need to share common
files with already installed applications, which in the past posed many installation problems.

4. The number of user prompts during installation is reduced.

5. The application can be deployed effectively from a variety of sources such as:

 a. Network share

 b. Web page

 c. Local media (CD/DVD-ROM, USB drive)

6. The application can be installed whether the user is online or offline.
7. The application will install within the security mode of the network, or if installed on the user’s
 local machine, full trust will be granted.

All applications developed in the .NET Framework 2.0 Windows Forms format will be able to be configured
with the ClickOnce technology.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Installing a Windows Forms Application on a Client
Computer or from a Server Using ClickOnce Technology
To set up ClickOnce for your new application, go to the Solution Explorer of the application, then right
click the Windows Application project. From here, click on Properties, then click Publish to get the Publish
screen. From this screen many options are available to set up the configuration required for the following:

1. Publishing location (Web site, FTP server, or file path)

2. Installation URL

3. Install mode and settings

 a. Online Only or Online/Offline

 b. Application Files Configurations

 c. Prerequisites

 d. Updates

 e. Options

4. Publish version number, with the ability to automatically increment the revision number with
 each publication

Each of these options can be set within the Publish screen without the need for additional lines of code,
making the configuration of a deployment strategy quick and accurate, as well as consistent for each
Windows Forms application.

The installation of a ClickOnce application is very simple from the standpoint of a user, and is also simple
to explain in code documentation.

The three modes of installation have slightly different installation methods on a client computer.

Network Installation
From a network share, such as from a file server or a peer computer:

1. Connect to the share or server.

2. Locate the ClickOnce Application folder.

3. Double click the Setup icon.

4. Follow the Installation wizard.

Web Site Installation
From a Web site, either intranet or Internet:

1. Open the Web site.

2. Navigate to the Publish.htm page.

3. Click on the Install icon.

4. Follow the Installation wizard.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Local Client Installation
From the local client’s CD/DVD-ROM or USB drive:

1. Open the media source.

2. Double click the Setup icon.

3. Follow the Installation wizard.

Note: ClickOnce applications can be published to the following locations:

1. FTP address

2. HTTP address

3. Network share location

4. Local file system

Configuring the Required Permissions on an
Application by Using a ClickOnce Deployment
The configuration of permissions is accomplished through the Security tab, which is directly above the
Publish screen’s tab, as located in the previous section.

The default settings are as follows:

Install Location Security Zone

Web site installs Internet Security Zone

Network file share installs Intranet Security Zone

Applications using ClickOnce security settings can be configured in the Security screen as:

1. Full trust applications

2. Partial trust applications

The Security screen allows you to set a variety of permissions through a scroll-down system, where indi-
vidual permissions can be set manually or calculated by the .NET Framework to match the permissions
required by the application.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

7.2 Creating a Windows Forms Setup Application

Creating a Windows Forms Application Setup Project
Although ClickOnce technology provides an easy system of deployment configuration, in some cases,
especially with specialized projects, a developer might want to create a customized deployment strategy.

Through the use of a Setup Project, a customized deployment solution can be created to do the following:

1. Create target directories.

2. Modify the registry.

3. Move and copy target files.

4. Add customizable installation actions.

The Setup Project solution is carried out through an .msi file, which will launch the setup wizard to install
the application.

The Setup Project solution has six built-in editors to assist in the development of the Setup Project:

1. Custom Actions Editor

2. File System Editor

3. File Types Editor

4. Launch Conditions Editor

5. Registry Editor

6. User Interface Editor

Setting Deployment Project Properties
The properties of Setup Projects are configured in the Properties window. The developer can set a more
than 20 properties in this window.

There are, however, two properties that should never be altered by the developer in this window:

1. ProductCode

2. UpgradeCode

Configuring a Setup Project to Add Icons During Setup
The addition of an icon is a simple process. The File System Editor is used to link a chosen icon to the ap-
plication during the installation.

1. From the File System Editor, select a folder and then select Add > File.

2. In the opened folder, choose the .ico file and click Add.

3. Now select the shortcut in the File System Editor.

4. Browse to the icon and select the icon design required for the application.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Configuring a Conditional Installation
Based on Operating System Versions
The installation of an application can include a provision to check for the current version of the client’s
operating system. This check can be used to allow for or abort an installation based on the current operat-
ing system at hand.

The system property Version NT is used for checking the current operating system.

VersionNT is an integer that is calculated through the use of the formula:

 MajorVersion * 100 + MinorVersion

Thus, all versions of Windows that are Windows 2000 and later would be listed as:

 VersionNT>=500

This system property prevents the installation of applications on legacy operating systems, sparing the user
the frustration of attempting to load an application that is not designed for that legacy operating system.

Configuring a Setup Project to Deploy the .NET Framework
.NET Framework 2.0 must be installed for applications created with Visual Studio 2005 to run.

.NET Framework 2.0 can be configured to be a part of the installation prerequisites. By default, it is config-
ured to be installed in the Setup Project deployment configuration.

7.3 Adding Functionality to a Windows Forms Setup Application

Adding a Custom Action to a Setup Project
The use of custom actions is conducive to a highly customizable setup project installation. This leads to an
advanced application installation.

The custom action code must be within an Installer class, which is the base class for all custom installers
in .NET Framework 2.0.

Note: The Installer class must be inherited in the application code.

http://www.preplogic.com/products/video/view-video-training.aspx

Exam Manual n Microsoft .NET Framework 2.0 Windows-based Application Development 1-800-418-6789

LearnSmart Cloud Classroom: Video Training n Practice Exams n Audiobooks n Exam Manuals

Installer Class
Namespace: System.Configuration.Install

Assembly: System.Configuration.Install (in system.configuration.install.dll)

Methods of the Installer Class:

Method Description

Install Performs the application installation

Commit Completes the installation transaction

Rollback Restores the pre-installation state of the system

Uninstall Removes the installation

Note: The RunInstallerAttribute must be added to the new class and set to true.

Adding Error Handling Code to a Setup Project for Custom Actions
Errors must be handled in the custom Setup Project environment because the custom actions are ex-
ecutables. Therefore, error handling code must be incorporated into the custom setup to avoid having the
application crash if an error is encountered.

The basic error handling techniques are as follows:

1. Use of Try/Catch blocks

2. Throwing of an InstallException

The InstallException will allow the current installation to be rolled back to its original state.

http://www.preplogic.com/products/video/view-video-training.aspx

	What to Know
	Abstract
	Tips
	1.0 Creating a UI for a Windows Forms Application by Using Standard Controls
	1.1 Adding and Configuring a Windows Form
	Adding a Windows Form to a Project at Design Time
	Form Class
	Configuring a Windows Form to Control Functionality

	1.2 Managing Control Layout on a Windows Form
	Grouping and Arranging Controls
	Panel
	GroupBox
	TabControl
	FlowLayoutPanel
	TableLayoutPanel
	Using the SplitContainer Control to Create Dynamic Container Areas

	1.3 Adding and Configuring a Windows Form Control
	Using the IDE to Add a Control to a Windows Form or Other Container Control of a Project at Design Time
	Adding Controls to a Windows Form at Run Time
	Modifying Control Properties
	Configuring Controls on a Windows Form at Run Time to Ensure that the UI Complies with Best Practices
	Creating and Configuring Command Controls
	Creating and Configuring Text Edit and Display Controls
	Using List-Based Controls
	ListBox
	ComboBox
	CheckedListBox
	Configuring a WebBrowser Control
	Adding and Configuring Date Setting Controls
	Displaying Images by Using Windows Forms Controls
	Configuring the NotifyIcon Component
	Creating Access Keys for Windows Forms Controls

	1.4 Creating and Configuring Menus
	Creating and Configuring a MenuStrip Component
	Changing the Displayed Menu Structure Programatically
	Creating and Configuring the ContextMenuStrip Component

	1.5 Creating Event Handlers for Windows Forms and Controls
	Using the Windows Forms Designer to Create Event Handlers
	Managing Mouse and Keyboard Events and Programming a Windows Forms Application to Recognize Modifier Keys
	Using the Windows Forms Designer to Create Default Event Handlers
	Connecting Multiple Events to a Single Event Handler
	Using the Code Editor to Override Methods Defined in the Base Class

	2.0 Integrating Data in a Windows Forms Application
	2.1 Implementing Data-Bound Controls
	Using the DataGridView Control to Display and Update the Tabular Data Contained in a Data Source
	Using a Simple Data-Bound Control to Display a Single Data Element on a Windows Form
	Implementing Complex Data Binding to Integrate Data from Multiple Sources
	Navigating Forward and Backward through Records in a DataSet in Windows Forms
	Defining a Data Source by Using a DataConnector Component

	2.2 Managing Connections and Transactions
	Configuring a Connection to a Database
	Enumerating through Instances of Microsoft SQL Server
	Opening an ADO.NET Connection to a Database
	Closing an ADO.NET Connection to a Database by Using the Close Method of the Connection Object
	Protecting Access to Data Source Connection Details
	Creating a Connection Designed for Reuse in a Connection Pool and Controlling a Connection Pool by Configuring Connection String Values Based on Database Type

	2.3 Creating, Adding, and Editing Data in a Connected Environment
	Retrieving Data by Using a DataReader Object
	Building SQL Commands
	Creating Parameters for a Command Object
	Performing Database Operations by Using a Command Object
	Retrieving Data from a Database by Using a Command Object
	Performing Asynchronous Operations by Using a Command Object

	2.4 Creating, Adding, and Editing Data in a Disconnected Environment
	Creating a DataSet
	Adding a DataTable to a DataSet
	Adding a Relationship between Tables within a DataSet
	Copying DataSet Contents
	Creating DataTables
	Creating and Using DataViews
	Representing Data in a DataSet by Using XML
	Generating DataAdapter Commands
	Populating a DataSet by Using a DataAdapter
	Updating a Database by Using a DataAdapter
	Resolving Conflicts between a DataSet and a Database by Using a DataAdapter
	Performing Batch Operations by Using DataAdapters

	2.5 Managing XML with the XML Document Object Model (DOM)
	Modifying an XML Document by Adding and Removing Nodes
	Modifying Nodes within an XML Document
	Writing Data in XML Format from the DOM
	Working with Nodes in the XML DOM
	Handling DOM Events
	Modifying the XML Declaration

	2.6 Reading, Writing, and Validating XML by Using the XmlReader Class and the XmlWriter Class
	Reading XML Data by Using the XmlReader Class
	Reading XML Element and Attribute Content
	Reading XML Data by Using the XmlTextReader Class
	Reading Node Trees by Using the XmlNodeReader Class
	Validating XML Data by Using the XmlValidatingReader Class
	Writing XML Data by Using the XmlWriter Class

	3.0 Printing in Windows Forms
	3.1 Managing the Print Process by Using Print Dialogs
	Printing in the .NET 2.0 Framework
	Configuring Windows Forms Print Options at Run Time
	PrinterSettings Class
	Changing the Printers Attached to a User’s Computer in Windows Forms
	Configuring the PrintPreviewDialog Control
	Setting Page Details for Printing by Using the PageSetupDialog Component

	3.2 Constructing Print Documents
	Configuring the PrintDocument Component
	Printing a Text Document in a Windows Form
	Printing Graphics in a Windows Format
	Alerting Users to the Completion of a Print Job
	Enabling Security for Printing in Windows Forms

	3.3 Creating Customized PrintPreview Components
	Setting the Document Property to Establish the Document to Be Previewed
	Setting the Columns and Rows Properties to Establish the Number of Pages That Will Be Displayed
	Setting the UseAntiAlias property
	Setting the Zoom Property to Establish the Relative Zoom Level
	Setting the StartPage Property
	Adding Custom Methods and Events to a PrintPreviewControl

	4.0 Enhancing Usability
	4.1 Performing Drag and Drop Operations
	Application Usability
	Drag and Drop Operations
	Performing Drag and Drop Operations between Applications
	Performing Drag and Drop Operations by Using a TreeView Control

	4.2 Implementing Globalization and Localization for a Windows Forms Application
	CultureInfo Class

	4.3 Implementing Accessibility Features
	4.4 Creating and Configuring Multiple Document Interface Forms
	Creating MDI Parent and Child Forms
	Identifying the Active MDI Child Form
	Arranging MDI Child Forms
	Creating a Window List Menu for a MDI Application	

	4.5 Creating, Configuring, and Customizing User Assistance Controls and Components
	4.6 Persisting Windows Forms between Sessions

	5.0 Implementing Asynchronous Programming Techniques to Improve the User Experience
	5.1 Managing a Background Process by Using the BackgroundWorker Component
	Asynchronous Programming
	The BackgroundWorker Component
	Running a Background Process
	Announcing the Completion of a Background Process
	Canceling a Background Process
	Reporting the Progress of a Background Operation
	Requesting the Status of a Background Process

	5.2 Implementing an Asynchronous Method
	Creating an Asynchronous Method
	Creating a New Process Thread

	6.0 Developing Windows Forms Controls
	6.1 Creating Composite Windows Forms Controls
	Windows Forms Controls
	Creating Composite Windows Forms Controls
	Creating Properties, Methods, and Events for Windows Forms Controls
	Exposing Properties of Constituent Controls
	Creating Custom Dialog Boxes
	Configuring a Control to Be Invisible at Run Time
	Configuring a Control to Have a Transparent Background

	6.2 Creating a Custom Windows Forms Control by Inheriting from the Control Class
	6.3 Creating an Extended Control by Inheriting from an Existing Windows Forms Control

	7.0 Configuring and Deploying Applications
	7.1 Configuring the Installation of a Windows Forms Application by Using ClickOnce Technology
	Deploying Applications
	Installing a Windows Forms Application on a Client Computer or from a Server Using ClickOnce Technology
	Network Installation
	Web Site Installation
	Local Client Installation
	Configuring the Required Permissions on an Application by Using a ClickOnce Deployment	

	7.2 Creating a Windows Forms Setup Application
	Creating a Windows Forms Application Setup Project
	Setting Deployment Project Properties
	Configuring a Setup Project to Add Icons During Setup
	Configuring a Conditional Installation Based on Operating System Versions
	Configuring a Setup Project to Deploy the .NET Framework

	7.3 Adding Functionality to a Windows Forms Setup Application
	Adding a Custom Action to a Setup Project
	Installer Class
	Adding Error Handling Code to a Setup Project for Custom Actions

